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Part |

Introduction

Packages used for data manipulation and representation
library(tidyverse) # opinionated collection of packages for data manipulation

library(corrplot) # (correlation) matriz plot
theme_set (theme_bw())
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Exploratory analysis of (modern) data sets

Assume a table with n individuals described by p features/variables

Questions

Look for patterns or structures to summarize the data by
¢ Finding groups of "similar” individuals
¢ Finding variables important for these data

® Performing visualization

Challenges

Size data may be large (“big data “: large n large p)

Dimension data may be high dimensional (more variables than
individual or n < p)

Redundancy many variables may carry the same information

Unsupervised we don't necessary know what we are looking after
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Overview of Statistics & Machine Learning

Where is today's course in this big picture?

Type of Learning Categories of Algorithms

Support p—

Classification Vector D'Zf"::"g}:m Naive Bayes NNe.ms'
Machines E Siabeoy
Supervised
Learning
Linear ol
. i SVR, Ensemble | | Decision Neural
Develop predictive Regression R GPR Methods Trees | |Networks
. model based on both
MaCh!ne input and output data
Learning ) o
Dimensionality
reduction PCA-MCA MDS CCA-Parafac Kernel PCA
methods
u ised kMeans, kmedoids Hierarchical Gaussian
nfuper_wse Clustering Fuzzy C-Means Mixture
earning
Neural Hidden Markov

Discover an internal Networks Model

representation from
input data only
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An example in genetics: 'snp’
Genetics variant in European population
Description: medium/large data, high-dimensional

500, 000 Genetics variants (SNP — Single Nucleotide Polymorphism) for
3000 individuals (1 meter x 166 meter (height x width)

® SNP : 90 % of human genetic
variations

® coded as 0, 1 or 2 (10, 1 or 2
allel different against the
population reference)

Figure: SNP (wikipedia)
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Summarize 500,000 variables with 2 features

Figure: DimenSiOn redUCtiOn =+ Iabels source: Nature " Gene Mirror Geography Within Europe”, 2008

In the original messy 3,000 x 500,000 table, we may find
® an extremely strong structure between individuals (" clustering”)
® a very simple subspace where it is obvious (" dimension reduction"ﬁ)97



Dimension reduction: general goals

Main objective: find a low-dimensional representation that captures
the "essence” of (high-dimensional) data

Application in Machine Learning

Preprocessing, Regularization
® Compression, denoising, anomaly detection

® Reduce overfitting in supervised learning

Application in Statistics/Data analysis

Better understanding of the data
® descriptive/exploratory methods
e visualization (difficult to plot and interpret > 3D!)
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Dimension reduction: problem setup

Settings

e Training data : D = {x1,...,%X,} € R?, (i.i.d.)
® Space RP of possibly high dimension (n < p)

Dimension Reduction Map

Construct a map ® from the space R? into a space R? of smaller
dimension:

d: RFPRIg<p
x — P(x)
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How should we design/construct ®7

Criterion
® Geometrical approach
® Reconstruction error

® Relationship preservation

Form of the map @
® Linear or non-linear ?
® tradeoff between interpretability and versatility ?

® tradeoff between high or low computational resource
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Companion data set: 'scRNA’
Subsamples of normalized Single-Cell RNAseq

Description: subsample of a large data set

Gene-level expression of 100 representative genes for a collection of 301 cells
spreaded in 11 cell-lines. Original transcription data are measured by counts
obtained by RNAseq and normalized to be close to a Gaussian distribution.
@ Pollen, Alex A., et al. Low-coverage single-cell mMRNA sequencing reveals cellular
heterogeneity and activated signaling pathways in developing cerebral cortex.
Nature biotechnology 32.10 (2014): 1053.

. Isolate and sequence o
Tissue (e.g. tumor) individual cells

Figure: Single Cell RNA sequencing data: general principle — source: Stephanie Hicks
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Companion data set: 'scRNA’

Brief data summary |

load("../../data/scRNA.RData")
scRNA <- as_tibble(t(pollen$data)) %>% add_column(cell_type = pollen$celltypes)

Data tab

scRNA[, 1:6] %>% head(3) %>% knitr::

le

kable("latex")

Spikel

MT2A

HBG2

PRG2

IFITM1

ANXA1L

0

12.21149

0

0

11.96908

11.837198

0

11.30622

0

0

12.67121

8.098769

0

11.92623

0

0

12.35984

10.688626

Cell types

scRNA %>% dplyr::select(cell_type) %>% summary() %>% knitr::kable()

cell_type
HL60 :54
K562 :
Kera :40
BJ :37
GW16
hiPSC
(Other):78

42

26
24
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Companion data set: 'scRNA’

Brief data summary Il

Histogram of normalized expression

scRNA %>% dplyr::select(-cell_type) %>% pivot_longer(everything()) %>%

ggplot() + aes(x = value, fill = name) + geom_histogram(show.legend = FALSE)

10000

count

5000
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Companion data set: 'scRNA’

Brief data summary 1l

Correlation between gene expression

scRNA %>% dplyr::select(-cell_type) %>% cor() %>%

corrplot (method = "color", tl.pos = "n", order = "hclust")

= — W] T ———
- L] .F

-

1

0.8
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Part |l

Linear Methods

Packages used to perform PCA

library(FactoMineR) # PCA and oter linear method for dimension reduction
library(factoextra) # fancy plotting for FactoMineR output
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PCA and classical Linear methods

Principal component Analysis (PCA) is for continuous data

Non continuous data

e Correspondence analysis (CA): contingency table
e Multiple correspondence analysis (MCA): categorical data

e Multiple factor analysis (MFA): multi-table, array data

~~ Basic adaptations that build on PCA to deal with non-continuous data
~~ smart encoding of non-continuous data to continuous ones

We will focus on PCA, as the mother of most linear (and non-linear)
methods.
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Objectives

Individual /Observations
® similarity between observations with respect to all the variables

e Find pattern (~ partition) between individuals

Variables
® linear relationships between variables

e find synthetic variables
Link between the two

® characterization of the groups of individuals with variables

® specific observations to understand links between variables
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Outline

Linear Methods

@ Background: high-school algebra
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Vectors in R"

Definition and Basics

A vector x € R? is defined by a d-uplet (x1,2,...,24), its coordinates.

Elementary operations

e Addition of two vectors (define ® Multiplication by a scalar

a parallelogram) (streching)
1+ Y1 ATy
T2 + Y2 AT
X+y= . AX = i , AeR
T+ Yd Azg
Properties
® associativity: e linearity: A(x+y)=Ax+\y

(x+y)+z=x+(y +2)
® commutativity: x+y =y +x * (A1 + A)x = A\x+ Aox
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Vectors in R"

Dot/Inner product and norm

Dot product of 2 vectors: sum of the products between each coordinate:

d
(x,y) Ex-yExTyéZmiyj.

=1
e x'y=y'x °* Ax'y) = (\x)"y=x"(\y)
® XT(Y+Z):XTY+XTZ e if x=0, then x'x = 0.

(Euclidean) norm (a.k.a length, magnitude)

|Ix|| = VxTx. we have ||Xx| = |A]||x]|.
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Vectors in R"

Distances and orthogonality

(Euclidean) distance between 2 vectors

dist(x,y) = [[x =yl
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Vectors in R"

Distances and orthogonality

(Euclidean) distance between 2 vectors

dist(x,y) = [x - ]|

Remark that when x and y are orthogonal and non zero, distances
between x and y and x and (—y) are the same. Then,

(x—y) (x-y)=x+y) (x+y) &x'y=0,
which motivates the following definition of orthornality:

Orthogonality

Two vectors x,y # 0 are orthogonal iff x Ty = 0.
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Vectors in R"

Orthogonal Projection and geometric definition of the dot product

Orthogonal projection of x onto y
It is the vector z such that
0z=)\y
@® y is orthogonal to x — z
We find A = x"y/|ly]|?
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Vectors in R"

Orthogonal Projection and geometric definition of the dot product

Orthogonal projection of x onto y
It is the vector z such that
0z=)\y
@® y is orthogonal to x — z
We find A = x"y/|ly]|?
Thanks to basic trigonometry theorem,

os(f) = M = )\M

IR

and then we end with the following geometric definition of the dot
product

Dot product: geometric definition
T
x 'y = cos(0)[Ix] [lyll
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Outline

Linear Methods

@® Geometric approach to PCA
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The data matrix

The data set is a n x p matrix X = (z;;) with values in R:
® each row x; represents an individual/observation

® each col x/ represents a variable/attribute

x! x? xJ xP

X1 [ Z11 X12 X1j Tip

X2 | T21 22 T2j L2p

X
X Tl T2 Lij Lip
Xn \Tnl Tn2 Tnj Tnp
scRNA[, 1:8] %>% head(3) %>% knitr::kable("latex")

Spikel MT2A | HBG2 | PRG2 IFITM1 ANXA1l | HBG1 | MPO
0 | 12.21149 0 0 | 11.96908 | 11.837198 0 0
0 | 11.30622 0 0 | 12.67121 8.098769 0 0
0 | 11.92623 0 0 | 12.35984 | 10.688626 0 0
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Cloud of observation in IR?

Individuals can be represented in the variable space R? as a point cloud

Center of Inertia
. (or barycentrum, or empirical mean)

/ 5 e > iy Tin/n

4 1 < dio1 Ti2/n
—_— izﬁzxiz 7 '

o
i=1

Figure: Example in R?

> i1 Tip/n

We center the cloud X around x denote this by X¢

11— ... T — T ... Tlp—Tp

¢ _ _ _
X = i1 — L1 ... Tijg — X5 ... Tip — Tp
Tpl — 21 ... Tpj—Tj ... Tpp—Typ
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Inertia and Variance

Total Inertia: distance of the individuals to the center of the cloud

1 n p 1 n 1 n
EZZ Ty — T Q_nz;Hxi—tz_ n;distQ(xi,x)
=1 : 1= 1=

I7 is proportional to the total variance
Let 3 be the empirical variance-covariance matrix

P n p
1

Ir= 23S (o2, = Y L - 2l = V) = trace (%)
j=1

j=1i=1 j=1

~+ Good representation has large inertia (much variability)

~> Large dispertion ~ Large distances between points
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Inertia with respect to an axis

The Inertia of the cloud wrt axe A is the sum of the distances between
all points and their orthogonal projection on A.

1,
IA = nZ;dth(xi,A)

Figure: Projection of x; onto a line A passing through x ,
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Decomposition of total Inertia (1)

Let AL be the orthogonal subspace of A in RP

oy
p3 A@Al: £
R .
S —
e ,

Theorem (Huygens)

A consequence of the above (Pythagoras Theorem) is the decomposition
of the following total inertia:

IT:IA—FIAL

By projecting the cloud X onto A, with loss the inertia measured by A+
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Decomposition of total Inertia (2)

Consider only subspaces with dimension 1 (that is, lines or axes). We can
decompose RP as the sum of p othogonal axis.

RF=A1 @A ®--- DA
~~ These axes form a new basis for representing the point cloud.

Theorem (Huygens)

It =Ipa, +Ipn, + -+ Ip

P
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Outline

Linear Methods

© Principal axes and variance maximization
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Finding the best axis (1)

Definition of the problem

® The best axis A is the "closest” to the point cloud

® |nertia of A; measures the distance between the data and A;
e A; is defined by the director vector vy, such as ||v1]| =1

e Af is defined by the normal vector vy, such as ||vi|| =1

~~ The best axis Ay is the one with the minimal Inertia.
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Finding the best axis (2)

Stating the optimization problem
Since Ay ® A+ =RP and Iy = I, +IA% , then

minimize IA, < maximize [ 1
veRP:||v|=1 veRP:||v|=1 Ay

31/97



Finding the best axis (3)

Stating the problem (algebraically)

Find vi;||vi| = 1 that maximizes

1~
Ing = EZ:dlst(xi,All)2
= lZ:vlT(xi—ic)(xi — %) vy
n -

"1

= VI ( —(x; — %) (x; — )_()T> Vi
=1 n

= VlTivl

Figure: Geometrical insight
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Finding the best axis (4)

We solve a simple constraint maximization problem with the method of

Lagrange multipliers:

maximize v{ 3v; < maximize v{ 3v; — A (|[vi]? — 1)
V1:HV1||:1 viERP A1 >0

By straightforward (vector) differentiation, an using that v v; = 1

22V1 — 2)\1V1 =0 2v1 = >\1V1
= ~
vlTvl —1=0 VlTEvl = /\1V1Tv1 =\ = Iﬁl
® v is the first (normalized) eigen vector of 3
® )i is the first eigen value of >

~» A1 is defined by the first eigen vector of >

~~ Variance " carried” by A is equal to the largest eigen value of 3|
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Finding the following axes

Second best axis

Find Ay with dimension 1, director vector vy orthogonal to Ay solving

maximize Iy 1 = vg 3va, with ||va] = 1,v{ va = 0.
vo ERP 2

~> Vg is the second eigen vector of 3 with eigen value Ao
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Finding the following axes

Second best axis

Find Ay with dimension 1, director vector vy orthogonal to Ay solving

maximize Iy 1 = vg 3va, with ||va] = 1,v{ va = 0.
vo ERP 2

~> Vg is the second eigen vector of 3 with eigen value Ao

And so on!

PCA is roughly a matrix factorisation problem

S=VAV', V=(vi va, ... vp), A=diag(\i,...,)\)

® V is an orthogonal matrix of normalized eigen vectors.

® A is diagonal matrix of ordered eigen values.
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Interpretation in R

V describes a new orthogonal basis and a rotation of data in this basis
~» PCA is an appropriate rotation on axes that maximizes the variance

A @ ® A
vi L L vy
M > > )\p
IAL > > IAL
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Outline

Linear Methods

@ Representation and interpretation
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Outline

Linear Methods

@ Representation and interpretation
Quality of the reconstruction
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Contribution of each axis and quality of the representation
Ay, is carrying inertia/variance defined by its orthogonal, thus

It =Ipas +- A Ipr = 4+
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Contribution of each axis and quality of the representation
Ay, is carrying inertia/variance defined by its orthogonal, thus
Ip=1Ips+-+ I =M+t

Relative contribution of axis k

A A
contrib(Ag) = P = i x 100

Z:I )‘j trace (2)

~ Percentage of explained inertia/variance explained
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Contribution of each axis and quality of the representation
Ay, is carrying inertia/variance defined by its orthogonal, thus
Ip=1Ips+-+ I =M+t

Relative contribution of axis k

A A
contrib(Ag) = LB b %100

Z:I Aj trace (E)

~ Percentage of explained inertia/variance explained

Global quality of the representation on the first k axes

contrib(Aq, ..., Ag) = Al_l_—il_)\k x 100
trace(E)

A few axes may explain a large proportion of the total variance.
~> This paves the way for dimension reduction
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Scree plot: 'crabs’

scRNA_pca <- scRNA %>%
PCA(graph = FALSE, quali.sup = which(colnames(scRNA) == "cell_type"))
fviz_eig(scRNA_pca)

Scree plot

30-

N
S

Percentage of explained variances
e
5

5 6
Dimensions
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Outline

Linear Methods

@ Representation and interpretation

Individuals point of view
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Individuals: representation in the new basis

Projection of point x; axis k

The projection of x; onto axis A is ¢;; vy, with
T _
cik = v (xi — X),
the coordinate of 7 in the basis vj (along axis Ay).

Coordinates of 7 in the new basis

Coordinates of i in the new basis {vi,...,vp} is thus
ci=(V (xi—%) =(x-%)V=XV, ¢ cR"

® 'V are often the called the loadings, or weights

® c; are the scores or coordinates in the new space for the individuals
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Individual visualization: projection in the new basis (1)

fviz_pca_ind(scRNA_pca, habillage

Individuals - PCA

Dim2 (19.9%)

™
N
325 =S
R
&

&

0
Dim1 (29.7%)

= "cell_type")

BodkEdOXSF PO

cell_type

2338
2339
BJ
GW16
GW21
GW21+3
hiPSC
HL60
K562
Kera
NPC
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Individual visualization: projection in the new basis (2)

fviz_pca_ind(scRNA_pca, axes = c(2,3), habillage

Dim3 (10.1%)

Individuals - PCA

S UG S [ [ S A—

. ]
0
Dim2 (19.9%)

= "cell_type")

cell_type
2338
2339
BJ
Gw16
w21
GW21+3
hiPSC
HL60
K562
Kera
NPC

BodkEdOXSF PO
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Warning: about distances after projection

Close projection doesn't mean close individuals!

Individu 1 T

Individu 2

\
N

Figure: Same projections but different situations (source: E. Matzner)

~> Only work when individuals are well represented in the lower space
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Individual: quality of the representation

Property

® An individual ¢ is well represented by Ay if it is close to this axis.

® |n other word, vector x; — X and v, are close to collinear

We use the cosine of the angle ;. between x; — X and vj to measure the

degree of co-linearity:

cos? (01,) =

(v;g (x

_,—c))Q

;= 12 7

factoextra::get_pca_ind(scRNA_pca)$cos2 %>% head(3) %>% kable("latex")
Dim.1 Dim.2 Dim.3 Dim.4 Dim.5
0.3976361 | 0.0545911 | 0.0156510 | 0.0949606 | 0.0040849
0.1946920 | 0.0412816 | 0.0815729 | 0.2278256 | 0.0000568
0.4160489 | 0.0849204 | 0.0324573 | 0.0912393 | 0.0327544
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Individual: contribution to an axis

Property

® Inertia "explained” by Ag is inertia of Aﬁ
RN n~L30 dist? (A, x;)

Contribution of x; to axis Ay is the proportion of variance/inertia carried
by individual 7:

2
Tlw: _ %
n~dist? (A, x;) <vk (xi x))
contr(x;) = 7 = 3
AF NAE

factoextra::get_pca_ind(scRNA_pca)$contr %>% head(3) %>% kable("latex")

Dim.1 Dim.2 Dim.3 Dim.4 Dim.5
0.5131474 | 0.1051793 | 0.0594716 | 0.5619077 | 0.0314858
0.2582327 | 0.0817469 | 0.3185806 | 1.3855779 | 0.0004498
0.4731939 | 0.1441978 | 0.1086970 | 0.4758193 | 0.2225046
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Outline

Linear Methods

@ Representation and interpretation

Variables point of view
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Cloud of variables in R"

Direct equivalence between geometry and statistics (collinearity =

correlation)
(ijxé> :P( k K)
S

cos(fx1) = x", x
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Principal Components

Dual representation

A symmetric reasoning can be made in R” for the variables, like with the
individuals in RP.

~> New axes are linear combinaison of the original variables, which can
be seen as new variables in the new latent space

Principal component

It is the linear combinasion formed by the orginal variables with weights
given by the loadings vi, = (i1, ..., Vkj, - -, Vkp)

fi. = kaj — a:J = X¢ vi, fi€ R"

Sometimes called "factors” in factor analysis, as latent (hidden) variables.
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Variable representation in the new space

Connection with original variables

® essential for interpretation
® answer to the question: how to read the axes of the individual map

® use correlation to measure connection to original variable

V(f) = v, n(XC)TX"’vk = v SV = M\

1
cov(fy, (X! — 7)) = EvaXCTXCe] = \LVi €5 = A\ Uk

cor (fy, ( - Zj)) =
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Variable vizualisation: correlation circle (1)

fviz_pca_var (scRNA_pca)

Dim2 (19.9%)

Variables - PCA

i
10- 1
1
VAMPS
I
LCP1pRAME |
NN
SR (B
05
PRG2
MRO
00— b mmmm 22N hale
“05-
1
1.0~ 1
:
|

*l. 0 *O. 5 0.0 0.5 1.0
Dim1 (29.7%)
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Variable vizualisation: correlation circle (2)

fviz_pca_var(scRNA_pca, axes = c(2,3))

Variables - PCA

MLLT11

Dim3 (10.1%)
°
i
|
:
|
i

-10 -05 0.

0 0.5 1.0
Dim2 (19.9%)
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Warning: about angle after projection

Close projection doesn’'t mean close variable!

Figure: Same angle but different situations (source: J. Josse)

~~ Only work when variables are well represented in the latent space
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Variable: quality of the representation

Same story as for individuals

Property

® An variable j is well represented by Ay if its projection is close to fj.

® High collinearity means high absolute correlation and high cosine.

® use cosine to the square of the angle between the original and new
variables.
~~ The projection of 7 must be close to the boundady of the correlation

circle

factoextra::get_pca_var (scRNA_pca)$cos2 %>} head(3) %>} kable("latex")

Dim.1 Dim.2 Dim.3 Dim.4 Dim.5
Spikel | 0.0196220 | 0.1287491 | 0.0292639 | 0.0206783 | 0.6007645
MT2A | 0.4428833 | 0.0290404 | 0.2725646 | 0.0640107 | 0.0344313
HBG2 0.0238491 | 0.3478273 | 0.4996552 | 0.0329798 | 0.0343303
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Variable: contribution to an axis

Similarly to individuals, we can measure the contribution of the original

variables to the construction of the new ones.

factoextra::get_pca_var(scRNA_pca)$contr %>} kable("latex")

Dim.1 Dim.2 Dim.3 Dim.4 Dim.5
Spikel 0.0660146 | 0.6466842 | 0.2898943 | 0.3189899 | 12.0718795
MT2A 1.4899972 | 0.1458647 | 2.7000781 | 0.9874472 0.6918700
HBG2 0.0802359 | 1.7470759 | 4.9496810 | 0.5087554 0.6898405
PRG2 1.0139009 | 0.6028304 | 2.9068121 | 1.8379608 0.0213405
IFITM1 1.2007133 | 1.1528680 | 1.3666546 | 0.7653552 1.4680454
ANXA1 1.9780804 | 0.6164234 | 0.1320548 | 0.0856922 2.6505138
HBG1 0.0807819 | 1.7503356 | 4.9690534 | 0.5020974 0.6898666
MPO 1.0457392 | 0.4382956 | 3.5630063 | 1.8958006 0.0677635
S100A6 2.6183716 | 0.0261683 | 0.3634093 | 0.1959209 0.4435930
TUBAIA 0.0056589 | 3.6825240 | 0.7969656 | 0.0007246 0.1601781
ARHGDIB 0.0371295 | 1.9854261 | 3.7599628 | 0.0232048 0.0015973
ANXA2 2.4874475 | 0.1862547 | 0.5291199 | 0.0009373 0.0726448
LGALS1 2.0381581 | 0.3730531 | 0.2802331 | 0.4490980 0.6752508
RPS4Y1 1.8891255 | 0.3179103 | 0.0000777 | 1.7898114 1.1765074
S100A11 1.8583855 | 1.2721098 | 0.0928818 | 0.1401025 0.0000681
IFITM3 2.2872679 | 0.2365565 | 0.6775251 | 0.0247328 0.2177227
S100A16 2.8571375 | 0.0009453 | 0.4875158 | 0.0048417 0.0865240
NGFRAP1 0.8430747 | 3.3003985 | 0.0404199 | 0.1031052 0.1506221
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Outline

Linear Methods

@ Additional tools and Complements
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Unifying view of variables and individuals

Principal components

The full matrix of principal component connects individual coordinates to
latent factors:

® new variables (latent factor) are seen column-wise
® new coordinates are seen row-wise

~~ Everything can be interpreted on a single plot, called the biplot
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Biplot (1)

factoextra::fviz_pca_biplot(scRNA_pca,
axes = c(1,2), habillage = "cell_type",
select.var = list(contrib = 30)

PCA - Biplot

S100A11

Dim2 (19.9%)

HodkmdONF DO
[}
g

Dim1 (29.7%)
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Biplot (2)

factoextra::fviz_pca_biplot(scRNA_pca,
axes = c(2,3), habillage = "cell_type",
select.var = list(cos2 = .75)

PCA - Biplot

Dim3 (10.1%)

HodkmdONF DO
[}
g

Dim2 (19.9%)
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Reconstruction formula

Recall that F = (fy, ..., f},) is the matrix of Principal components. Then,
e f;. = X%vy, for projection on axis k
e F = XV for all axis.

Using orthogonality of V, we get back the original data as follows,
without loss (V7 performs the inverse rotation of V):

X¢=FV'
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Reconstruction formula

Recall that F = (fy, ..., f},) is the matrix of Principal components. Then,
e f;. = X%vy, for projection on axis k
e F = XV for all axis.

Using orthogonality of V, we get back the original data as follows,
without loss (V7 performs the inverse rotation of V):

X¢=FV'
We obtain an approximation X¢ (compression) of the data X¢ by
considering a subset S of PC, typically S =1,...,q with ¢ < p.
X¢=FsVi=XVsVi

~» This is a rank-q approximation of X (information captured by the first
q axes).
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Choosing the number of components

Various solutions, open question i,

Scree plot, test on eigenvalues, confidence
interval, cross-validation, generalized

. . 1
cross-validation, etc. DDI:ICI
o i f— )
T1 T TK H FQ
Objectives
® |nterpretation PCA

Data _— Noise

® Separate structure and noise

® Data compression
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Example: Generalized Cross Validation

GCV <- dplyr::select(scRNA, -cell_type) %>% as.matrix() %>%
FactoMineR::estim_ncp(ncp.min = 1, ncp.max = 30)
gplot(1:length(GCV$criterion), GCV$criterion, geom = "line", xlab = "number of axis

07

0.6

05

GeCv

04

03

02

number of axis
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Part |lI

Non-linear Methods

Packages required for reproducing the slides

library (NMF) # Non-Negative Matriz factorisation
library(kernlab) # Kernel-based methods, among which kernel-PCA
library (MASS) # Various statistical tools, including metric MDS
library(Rtsne) # tSNE tmplementation in R

library (umap) # Uniform Manifold Approzimation and Projection

theme_set (theme_bw()) # my default theme for ggplot2
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PCA (and linear methods) limitations

Do not account for complex pattern
® Linear methods are powerful for planar structures
e May fail at describing manifolds

Fail at preserving local geometry

® High dimensional data are characterized by multiscale properties
(local / global structures)

® Non Linear projection helps at preserving local characteristics of
distances

Figure: Intuition of manifolds and geometry underlying sc-data — source: F. Picard
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Dimension reduction: revisiting the problem setup

Settings

e Training data : D = {x1,...,%X,} € R?, (i.i.d.)
® Space RP of possibly high dimension (n < p)

Dimension Reduction Map

Construct a map ® from the space R? into a space R? of smaller
dimension:

d: RFPRIg<p
x — P(x)
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How should we design/construct ®7

Geometrical approach (see slides on PCA)

Idea to go beyond linear approaches
® Modify the model by amending the reconstruction error

® Focus on Relationship preservation

Form of the map ®
® Linear or non-linear 7
® tradeoff between interpretability and versatility ?

¢ tradeoff between high or low computational resource
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Outline

Non-linear Methods

@ Motivated by reconstruction error
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Outline

Non-linear Methods

@ Motivated by reconstruction error
PCA as a matrix factorization
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Reconstruction error approach

@ Construct a map ® from the space RP? into a space RY of smaller
dimension:

®: RFSRYIg<p
x— d(x)=x

® Construct ® from R? to RP (reconstruction formula)

© Control an error € between x and its reconstruction X = ®(®(x))
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Reconstruction error approach

@ Construct a map ® from the space RP? into a space RY of smaller
dimension:

®: RFSRYIg<p
x— d(x)=x

® Construct ® from R? to RP (reconstruction formula)

© Control an error € between x and its reconstruction X = ®(®(x))

For instance, the error measured with the Frobenius between the original
data matrix X and its approximation:

(X.X) =[x - X ); _ zn: | - <i>(<1>(xi))H2
=1
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Reinterpretation of PCA

PCA model

Let V be a p x ¢ matrix whose columns are of ¢ orthonormal vectors.

P(x)=V'(x—p)=x
x>~ &%) = p+ Vx

~> Model with Linear assumption + ortho-normality constraints
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Reinterpretation of PCA

PCA model
Let V be a p x ¢ matrix whose columns are of ¢ orthonormal vectors.

P(x)=V'(x—p)=x
x~®(X)=p+Vx
~> Model with Linear assumption + ortho-normality constraints

PCA reconstruction error

n
2
minimize xi—p)—VVT(x; — H
HERP VEO, 4 ; H( ! N) ( ! ,u)
Solution (explicit)
® 4 = X the empirical mean
® V an orthonormal basis of the space spanned by the ¢ first

eigenvectors of the empirical covariance matrix
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Important digression: SVD

Singular Value Decomposition (SVD)
The SVD of M a n x p matrix is the factorization given by

M=UDV',
where 7 = min(n, p) and
® D, = diag(dy,...0,) is the diagonal matrix of singular values.
e U is orthonormal, whose columns are eigen vectors of (MMT)
® V is orthonormal whose columns are eigen vectors of (M? M)

~ Time complexity in O(npqr) (less when k < r components are required)
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Important digression: SVD

Singular Value Decomposition (SVD)
The SVD of M a n x p matrix is the factorization given by

M=UDV',
where = min(n, p) and
® D, = diag(dy,...0,) is the diagonal matrix of singular values.
e U is orthonormal, whose columns are eigen vectors of (MMT)
® V is orthonormal whose columns are eigen vectors of (M? M)

~ Time complexity in O(npqr) (less when k < r components are required)
Connection with eigen decomposition of the covariance matrix
M'M = VDU'UDV'

=VD2V' = VAVT
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PCA solution is given by SVD of the centered data matrix

= ubv’

X ub

Since X = X°V = UDV 'V = UD, PCA can be rephrased as

A 2
Xe=FV' = arg min HX - FVTH with [|A]% = 3" a2,
FEMy,q,VEO, ¢ F pr

X e RV e Rqu} Best linear low-rank representation of X
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Outline

Non-linear Methods

@ Motivated by reconstruction error

Kernel-PCA
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Kernel-PCA

Principle: non linear transformation of x prior to linear PCA

@ Project the data into a higher space where it is linearly separable
® Apply PCA to the transformed data

X2

Figure: Transformation ¥ : x — W(x) (illustration in presence of existing labels)
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Kernel-PCA

Kernel PCA Model

Assume a non linear transformation ¥(x;) where ¥ : R? — R", then
perform linear PCA, with V a n x ¢ orthonormal matrix

B(x) =V U(x—p)=x

Kernel trick

Never calculate W(x;) thanks to the kernel trick:

K =k(x,y) = (¥(x),¥(y)) = ¥(x)" ¥(y)

Solution

Eigen-decomposition of the doubly centered kernel matrix K = k(x;, x;/)

K=I-11"/n)KI-11"/n) = VAV’
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Choice of a kernel

A symmetric positive definite function k(x,y) € R, which depends on the

kind of similarity assumed
Some common kernels

¢ Polynomial Kernel
k(Xi,Xi/) = (Xl—-l—Xi/ —+ C)d

¢ Gaussian (radial) kernel

2
— % — Xr
k(xi, xi) = exp H;UQZH
e Laplacian kernel
(s, %) = exp X=Xl
o

~ Kernel PCA suffers from the choice of the Kernel

76 /97



Example on scRNA

Run the fit

scRNA_expr <- scRNA %>% dplyr::select(-cell_type) %>% as.matrix()

kPCA_radial <-
kpca(scRNA_expr, kernel = "rbfdot", features = 2, kpar = list(sigma = 0.5)) %>%
pcv() %>% as.data.frame() %>%
add_column(kernel = "Radial") %>%
add_column(cell_type = scRNA$cell_type)

kPCA_linear <-
kpca(scRNA_expr, kernel = "vanilladot", features = 2, kpar = list()) %>%
pcv() %>% as.data.frame() %>%
add_column(kernel = "Linear") %>%
add_column(cell_type = scRNA$cell_type)

kPCA_polydot <- kpca(scRNA_expr, kernel = "polydot", features = 2, kpar = list(deg:
pev() %>% as.data.frame() %>%
add_column(kernel = "Polynomial") %>%
add_column(cell_type = scRNA$cell_type)

kPCA_laplacedot <- kpca(scRNA_expr, kernel = "laplacedot", features = 2) %>%
pcv() %>% as.data.frame() %>%
add_column(kernel = "Laplace") %>%

add_column(cell_type = scRNA$cell_type) 77 /97



Example on scRNA

Compare the projections

rbind (kPCA_linear, kPCA_polydot, kPCA_radial, kPCA_laplacedot) %>%
ggplot(aes(x = V1, y = V2, color = cell_type)) +
geom_point (size=1.25) + guides(colour = guide_legend(override.aes = list(size=6)

facet_wrap(. kernel, scales = 'free') + labs(x = '', y = "'")
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15 - .
; -
10 l 0.003 . — .‘ -
.t ol b
.l' % X .. 0} .‘.._-'
05 ‘ 0.000 .
e ——— / Q"r cell_type
.o
00 o s © 233
© 233
o5 o=
-0.006 ® owis
» . 0.0 -0.004 -0.002 0.000 0.002 0.004 . Gw21
Radial © cwass
Loe0s o © riesc
0 ©® Heo
5.0e-07 . Kse2
B © kera
0.0e+00 -5 © wec
.
vty bl 04 o -
~5.0e-07 .”“., o .
-5
-1.0e-06 ot
. entest
'<.: . -10 o
~1.5e-06
-6e-07  -4e-07  -2e-07 0e+00 2e-07 -15 -10 -5 o

78/97



Outline

Non-linear Methods

@ Motivated by reconstruction error

Other directions
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Other approaches

Linear model with other constraints

Let V be a p X ¢ matrix and x € R?

q
x~p+ Y #FVi=p+ Vx
j=1
Apply other constraints on 'V and or the factor/representation x

® V and x non-negative: Non-negative Matrix Factorization
library (NMF)

® 'V sparse, possibly orthogonal: sparse PCA
library(sparsepca)

® X sparse : Dictionary learning
library (SPAMS)

* (X7, X" independent : Independent Component Anaysis
library(fastICA)
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Auto-encoders

Highly non-linear model

Find ® and ® with two neural-networks, controlling the error.

(X, X) zzn:]
=1

# layers and neurons determine the model complexity

- 2
X; — @(@(xl))H + regularization(®, ®)

Need regularization to avoid overfitting
® Fitted with optimization tools like stochastic gradient descent
® Require much more data and more computational resources

® [nterpretation questionable

Some Python equivalents of (torch, pytorch, tensorflow):

library (keras)
library(torch)
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Outline

Non-linear Methods

@ Motivated by relation preservation
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Pairwise Relation

Focus on pairwise relation R(x;, Xy ).
Distance Preservation
® Construct a map ® from the space RP? into a space RY of smaller
dimension:
d: RPRIgp
x — D(x)

such that  R(x;,x;r) ~ R'(Xi, Xir)
Multidimensional scaling
Try to preserve inner product related to the distance (e.g. Euclidean)

t-SNE — Stochastic Neighborhood Embedding

Try to preserve relations with close neighbors with Gaussian kernel
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Outline

Non-linear Methods

@ Motivated by relation preservation
Stochastic Neighborhood Embedding
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Stochastic Neighbor Embedding (SNE)

Let (x1,...,Xy) be the original points in RP, and measure similarities by

pij = (pjji + Ppijj)/2n
where
exp(x; = xil?/20)
> exp(— Xk — xi[P/257)
exp(—d?j/2ai2)
Dkt exp(—d2,/20%?)

Ppji =

~> SNE preserves relations with close neighbors with Gaussian kernels

~» o smooths the data (linked to the regularity of the target manifold)
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The perplexity parameter

The variance 02-2 should adjust to local densities (neighborhood of point )

Perplexity: a smoothed effective number of neighbors

The perplexity is defined by

n
Perp(pi) =270, H(pi) = =Y pjjilogs py
pust

where H is the Shannon entropy of p; = (pyi; - - -, Ppji)-

~> SNE performs a binary search for the value of ¢; that produces a p;
with a fixed perplexity that is specified by the user.
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tSNE and Student / Cauchy kernels

Consider (X1,...,%,) are points in the low dimensional space R7=2
® Consider a similarity between points in the new representation:
exp(—|%i — %)

> ki XP(— 1%k — %51%)

4i; =

* Robustify this kernel by using Student(1) kernels (ie Cauchy)

b (IR %)
B e (U % — %i[2) 1
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t-SNE: pros/cons

Properties

® good at preserving local distances (intra-cluster variance)
® not so good for global representation (inter-cluster variance)

® good at creating clusters of close points, bad at positioning clusters
wrt each other

Limitations

® importance of preprocessing: initialize with PCA and feature
selection plus log transform (non linear transform)

® percent of explained variance 7 interpretation of the ¢ distribution ?
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Example on scRNA |

Run the fit

scRNA_expr <- scRNA %>} dplyr::select(-cell_type) %>% as.matrix()

tSNE_perp2  <- Rtsne(scRNA_expr, perplexity = 2)$Y %>%
as.data.frame() %>% add_column(perplexity = 2) %>% add_column(cell_type = scRNA$

tSNE_perpl0 <- Rtsne(scRNA_expr, perplexity = 10)$Y %>%
as.data.frame() %>}, add_column(perplexity = 10) %>% add_column(cell_type = scRNAS

tSNE_perp100 <- Rtsne(scRNA_expr, perplexity = 100)$Y %>%
as.data.frame() %>% add_column(perplexity = 100) %>% add_column(cell_type = scRN.

Compare perplexity

rbind (tSNE_perp2,tSNE_perp10,tSNE_perp100) %>%
ggplot(aes(x = V1, y = V2, color = cell_type)) +
geom_point(size=1.25) +
guides(colour = guide_legend(override.aes = list(size=6))) +
facet_wrap(. perplexity, scales = 'free')
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Example on scRNA I
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Outline

Non-linear Methods

@ Motivated by relation preservation

Other methods
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Multidimensional scaling

a.k.a Principale Coordinates Analysis

Problem setup
Consider a collection of points x; € RP and assume either
® D =d;» an x n dissimilarity matrix, or
® S =g;i an xn similarity matrix, or
Goal: find x; € R? while preserving S/D in the latent space
~+ Don't need access to the position in R? (only D or S ~~ 'kernel’).

Classical MDS model

Measure similarities with the (centered) inner product and minimize
T T2\
S (6= ) G — ) — % %)
i
assuming a linear model X = V' (x; — p), with V € Opyq.
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Isomap

Basic idea

® Metric MDS performs embedding based on pairwise Euclidean-based
distance

® Isomap embeds a distance induced by a neighborhood graph

Formally, consider a neighborhood \; for each point, then

d”/:{ +00 if j ¢ N;

[1%i — x| ’

and compute the shortest path distance for each pair prior to MDS.

library(vegan)

93/97



Uniform Manifold Approximation and Projection |

® Use another distance based of k—neighborhood graph
® tends to preserve both local and glocal
Run the fit on scRNA

scRNA_expr <- scRNA >} dplyr::select(-cell_type) %>% as.matrix()
umap_fit  <- umap(scRNA_expr)$layout %>%
as.data.frame() %>} add_column(cell_type = scRNA$cell_type)

Visualization

umap_fit %>%
ggplot(aes(x = V1, y = V2, color = cell_type)) +
geom_point(size=1.25) +
guides(colour = guide_legend(override.aes = list(size=6)))
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Uniform Manifold Approximation and Projection Il
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Uniform Manifold Approximation and Projection Il
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To conclude

You can play online on https://projector.tensorflow.org/
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https://projector.tensorflow.org/

	Introduction
	Linear Methods
	Background: high-school algebra
	Geometric approach to PCA
	Principal axes and variance maximization
	Representation and interpretation
	Quality of the reconstruction
	Individuals point of view
	Variables point of view

	Additional tools and Complements

	Non-linear Methods
	Motivated by reconstruction error
	PCA as a matrix factorization
	Kernel-PCA
	Other directions

	Motivated by relation preservation
	Stochastic Neighborhood Embedding
	Other methods



