
Poisson lognormal models for count data
Variational inference, Optimization

J. Chiquet, M. Mariadassou, S. Robin

+ B. Batardière, J. Kwon, J. Stoehr

MIA Paris-Saclay, AgroParisTech, INRAE

Last update 14 November, 2022

https://pln-team.github.io/PLNmodels

https://pln-team.github.io/PLNmodels

Outline

1. Multivariate Poisson lognormal models

2. Optimization with Variational inference

3. Properties of the Variational estimators

4. Direct Optimization with Important Sampling

5. Zero-Inflated PLN

2 / 56

Multivariate Poisson lognormal models

Motivations, Framework

3 / 56

Models for multivariate count data

If we were in a Gaussian world...
The general linear model [MKB79] would be appropriate! For each sample ,

null covariance independence uncorrelated species/transcripts do not interact

This model gives birth to Principal Component Analysis,
Discriminant Analysis, Gaussian
Graphical Models, Gaussian Mixture models and many others

With count data...
There is no generic model for multivariate counts

Data transformation (log,) : quick and dirty
Non-Gaussian multivariate distributions [Ino+17]: do not scale to data dimension yet
Latent variable models: interaction occur in a latent (unobserved) layer

i = 1, … ,n

Yi
abundances

= x
⊤
i B


covariates

+ oi
sampling effort

+ εi, εi ∼ N (0p, Σ
between-species dependencies

)

⇔ ⇝

…

√

4 / 56

The unkwown parameters are

, the regression parameters
, the variance-covariance matrix

Stacking all individuals together,

 is the matrix of counts
 is the matrix of design
 is the matrix of offsets

The Poisson Lognormal model (PLN)
The PLN model [AH89] is a multivariate generalized linear model, where

the counts are the response variables
the main effect is due to a linear combination of the covariates
a vector of offsets can be specified for each sample.

Properties: over-dispersion, arbitrary-signed covariances

mean:
variance:
covariance:

Yi

xi

oi

Yi|Zi ∼ P (exp Zi) , Zi ∼ N (oi + x
⊤
i B, Σ),

B

Σ

Y n × p

X n × d

O n × p

E(Yij) = exp(oij + x
⊤
i B⋅j + σjj/2) > 0

V(Yij) = E(Yij) + E(Yij)
2 (eσjj − 1) > E(Yij)

Cov(Yij,Yik) = E(Yij)E(Yik) (eσjk − 1) .

5 / 56

Natural extensions

Various tasks of multivariate analysis
Dimension Reduction: rank constraint matrix .

Classification: maximize separation between groups with means

Clustering: mixture model in the latent space

Network inference: sparsity constraint on inverse covariance.

Variable selection: sparsity constraint on regression coefficients

Σ

Zi ∼ N (μ, Σ = CC
⊤), C ∈ Mpk with orthogonal columns.

Zi ∼ N (μk1{i∈k}, Σ), for known memberships.

Zi ∣ i ∈ k ∼ N (μk, Σk), for unknown memberships.

Zi ∼ N (μ, Σ = Ω
−1), ∥Ω∥1 < c.

Zi ∼ N (x
⊤
i B, Σ), ∥B∥1 < c.

6 / 56

Illustration on ecological data (eDNA)

Oaks powdery mildew data set
Jakuschkin, Fievet, Schwaller, Fort, Robin, and Vacher [Jak+16] Study effects of the pathogen
E.Aphiltoïdes (mildew) wrt bacterial and microbial communities

Species Abundances
Microbial communities sampled on the surface of oak leaves
Communities sequenced and cleaned resulting in OTUs (66 bacteria, 48 fungi).

Covariates and offsets
Characterize the samples and the sampling, most important being

tree : Tree status with respect to the pathogen (susceptible, intermediate or resistant)
distTOground : Distance of the sampled leaf to the base of the ground
orientation : Orientation of the branch (South-West SW or North-East NE)
readsTOTfun : Total number of ITS1 reads for that leaf
readsTOTbac : Total number of 16S reads for that leaf

n = 116
p = 114

7 / 56

Next1 2 3 ... 12Previous

Data table

b_OTU_112
<int>

b_OTU_1191
<int>

b_OTU_1200
<int>

146 1 6
0 1 0
0 0 0
1 1 0
1 1 1
2 20 0
2 3 0
4 3 0

42 0 7
2 0 0

1-10 of 116…

Matrix of count (log-scale)

Abundance table 8 / 56

PLN with offsets and covariates (1)

Offset: modeling sampling effort

The predefined offset uses the total sum of reads, accounting for technologies specific to
fungi and bacteria:

M01_oaks <- PLN(Abundance ~ 1 + offset(log(Offset)) , oaks)

Covariates: tree and orientation effects ('ANOVA'-like)

The tree status is a natural candidate for explaining a part of the variance.

We chose to describe the tree effect in the regression coefficient (mean)
A possibly spurious effect regarding the interactions between species (covariance).

M11_oaks <- PLN(Abundance ~ 0 + tree + offset(log(Offset)), oaks)

What about adding more covariates in the model, e.g. the orientation?

M21_oaks <- PLN(Abundance ~ 0 + tree + orientation + offset(log(Offset)), oaks)

9 / 56

PLN with offsets and covariates (2)
There is a clear gain in introducing the tree covariate in the model:

rbind(M01 = M01_oaks$criteria,
 M11 = M11_oaks$criteria, M21 = M21_oaks$criteria) %>%
 knitr::kable(format = "html")

nb_param loglik BIC ICL

M01 6669 -32276.98 -48127.83 -52148.35

M11 6897 -31510.75 -47903.50 -51631.08

M21 7011 -31422.85 -48086.56 -51703.18

Looking at the coefficients associated with tree bring additional insights:B

10 / 56

Discriminant Analysis
Use the tree variable for grouping (grouping is a factor of group to be considered)

myLDA_tree <-
 PLNLDA(Abundance ~ 1 + offset(log(Offset)), grouping = oaks$tree, data = oaks)

11 / 56

A PCA analysis of the oaks data set
PCA_offset <- PLNPCA(Abundance ~ 1 + offset(log(Offset)), data = oaks, ranks = 1:30)

12 / 56

PCA: removing covariate effects
To hopefully find some hidden effects in the data, we can try to remove confounding ones:

PCA_tree <-
 PLNPCA(Abundance ~ 0 + tree + offset(log(Offset)), data = oaks, ranks = 1:30)

13 / 56

Network inference
networks <- PLNnetwork(Abundance ~ 0 + tree + offset(log(Offset)), data = oaks)

14 / 56

Availability

Help and documentation
github group https://github.com/pln-team
PLNmodels website https://pln-team.github.io/PLNmodels

R/C++ Package PLNmodels
Last stable release on CRAN, development version available on GitHub).

install.packages("PLNmodels")
remotes::install_github("PLN-team/PLNmodels@dev")

library(PLNmodels)
packageVersion("PLNmodels")

[1] '0.11.7.9500'

Python module pyPLNmodels
A Python/PyTorch implementation is about to be published

15 / 56

https://github.com/pln-team
https://pln-team.github.io/PLNmodels

Variational inference for standard PLN

Optimisation

16 / 56

Inference: general ingredients
Estimate , predict the , while the model marginal likelihood is

Expectation-Maximization
With the entropy of ,

EM requires to evaluate (some moments of) , but there is no close form!

Variational approximation [WJ08]
Use a proxy of minimizing a divergence in a class (e.g, Küllback-Leibler divergence)

θ = (B, Σ) Zi

pθ(Yi) = ∫
Rp

p

∏
j=1

pθ(Yij|Zij) pθ(Zi)dZi

H(p) = −Ep(log(p)) p

log pθ(Y) = Epθ(Z | Y)[log pθ(Y, Z)] +H[pθ(Z | Y)]

pθ(Z | Y)

qψ pθ(Z | Y) Q

qψ(Z)⋆ arg min
q∈Q

D (q(Z), p(Z|Y)) , e.g.,D(. , .) = KL(. , .) = Eqψ
[log] .

q(z)

p(z)

17 / 56

Inference: specific ingredients
Consider the class of diagonal multivariate Gaussian distributions:

and maximize the ELBO (Evidence Lower BOund)

where, letting , we have

Q

{q : q(Z) = ∏
i

qi(Zi), qi(Zi) = N (Zi; mi, diag(si ∘ si)) , ψi = (mi, si) ∈ Rp × Rp}

J(θ,ψ) = log pθ(Y) − KL[qψ(Z)||pθ(Z|Y)]

= Eψ[log pθ(Y, Z)] +H[qψ(Z)]

=
n

∑
i=1

Ji(θ,ψi),
1

n

Ai = Eqi
[exp(Zi)] = exp(oi + mi + s

2
i)

1
2

Ji(θ,ψi) =Y
⊺

i (oi + mi) − (Ai − log(s
2
i))

⊺

1p + | log |Ω|

− (mi − Θxi)
⊺
Ω(mi − Θxi) − diag(Ω)⊺

s
2
i + cst

1

2

1

2
1

2

1

2

18 / 56

Resulting Variational EM
Alternate until convergence between

VE step: optimize (can be written individually)

M step: optimize

We end up with a -estimator:

where is the profiled objective function.

ψ

ψ
(h)
i = arg max Ji(θ

(h),ψi)(= arg min
qi

KL[qi(Zi) || pθh(Zi | Yi)])

θ

θ(h) = arg max
n

∑
i=1

JYi
(θ,ψ

(h)
i)

1

n

M

θ̂
ve

= arg max
θ

(
n

∑
i=1

sup
ψi

Ji(θ,ψi)) = arg max
θ

(
n

∑
i=1

J̄ i(θ))


J̄ n(θ)

1

n

1

n

J̄ i(θ) = supψi
Ji(θ,ψi)

19 / 56

Optimization of simple PLN models

Property of the objective function
The ELBO is bi-concave, i.e.

concave wrt for given
convace wrt for given

but not jointly concave in general.

M-step: analytical

VE-step: gradient ascent

 Same routine for other PLN variants.

J(θ,ψ)

ψ = (M, S) θ

θ = (Σ, B) ψ

B̂ = (X
⊤

X)
−1

XM, Σ̂ = (M − XB̂)
⊤
(M − XB̂)+ diag(1

⊺
S

2)
1

n

1

n

= (Y − A − (M − XB)Ω) , = − S ∘ A − SDΩ.
∂J(ψ)

∂M

∂J(ψ)

∂S

1
S

⇝

20 / 56

Implementations
Medium scale problems (R/C++ package)

algorithm: conservative convex separable approximations [Sva02]
implementation: NLopt nonlinear-optimization library [Joh11]

 Up to thousands of sites (), hundreds of species ()

Large scale problems (Python/Pytorch module)

algorithm: Rprop (gradient sign + adaptive variable-specific update) [RB93]
implementation: torch with GPU auto-differentiation [FL22; Pas+17]

 Up to and

n = 10,000, p = 2,000, d = 2 (running time: 1 min 40s)

⇝ n ≈ 1000s p ≈ 100s

⇝ n ≈ 100, 000 p ≈ 10, 000s

21 / 56

Variational estimators of standard PLN

Properties

22 / 56

Estimator Bias and consistency

M-estimation framework [Van00]
Let and consider the stochastic map defined by

M-estimation suggests that should converge to
 where .

Theorem [WM15]
In this line, Westling and McCormick [WM15] show that under regularity conditions ensuring
that is smooth enough (e.g. when and are restricted to compact sets),

Open question: ? No formal results as is untractable but numerical evidence
suggests so.

ψ̂i = ψ̂i(θ, Yi) = arg maxψ Ji(θ,ψ) J̄ n

J̄ n : θ ↦
n

∑
i=1

Ji(θ, ψ̂i)
Δ
=

n

∑
i=1

J̄ i(θ)
1

n

1

n

θ̂
ve

= arg maxθ J̄ n(θ)
θ̄ = arg maxθ J̄ (θ) J̄ (θ) = Eθ⋆ [J̄ Y (θ)] = Eθ⋆ [JY (θ, ψ̂(θ,Y))]

J̄ n θ ψi

θ̂
ve

−−−−→ θ̄
a.e.

n→+∞

θ̄ = θ⋆ J̄

23 / 56

Numerical study

Study Bias of the estimator of
number of variables

number of covariates

number of samples

sampling effort (TSS)

 as , with

 with entries sampled from

noise level

100 replicates

B̂

p = 50

d ∈ {2, 4}

n ∈ {30, 250, 500, 1000}

≈ 104

Σ σjk = σ2ρ|j−k| ρ = 0.2

B N (0, 1/d)

σ2 ∈ {0.25, 1, 4}

24 / 56

Bias of

Bias vanishes with ` `

B̂

n

25 / 56

Root mean square error of

RMSE vanishes with ` `

B̂

n

26 / 56

Contribution of bias in RMSE of

Bias contribute in large part of the MSE

B̂
27 / 56

Estimator Variance

Motivation: Wald test
Test with the statistic

If is the MLE, then the Fisher Information matrix

can be used to build an approximation of .

Application
Derive confidence intervals for the inverse covariance and the regression parameters .

H0 : Rθ = r0

(Rθ̂ − r0)⊤[nRV̂(θ̂)R⊤]
−1

(Rθ̂ − r0) ∼ χ2
k

where k = rank(R).

θ̂

I(θ) = −Eθ []
∂2 log ℓ(θ;x)

∂θ2

nV(θ̂)−1

Ω B

28 / 56

Variance: naïve approach
Do as if was a MLE and the log-likelihood.

Variational Fisher Information
The Fisher information matrix is given by (from the Hessian of) by

and can be inverted blockwise to estimate .

Wald test and coverage

The confidence intervals at level are given by

.

θ̂
ve

J̄ n

J

In(θ̂
ve

) = (
(Ip ⊗ X

⊤)diag(vec(A))(Ip ⊗ X) 0

0 Ω
−1 ⊗ Ω

−1
)

1
n

1
2

V(θ̂)

V̂(Bkj) = [n(X
⊤diag(vec(Â.j))X)−1]kk, V̂(Ωkl) = 2Ω̂kkΩ̂ll

α

Bkj = B̂kj ± √V̂(Bkj), Ωkl = Ω̂kl ± √V̂(Ωkl)
q1−α/2

√n

q1−α/2

√n

29 / 56

Contribution of variance in RMSE of

Weak contribution of Variance to MSE

B̂
30 / 56

Variance: empirical vs variational

Variance underestimated...

31 / 56

95% confident interval - coverage

No trusted confidence intervals can be derived out-of-the box

32 / 56

Variance : sandwich estimator (I)
Pursuing on the M-estimation theory of Van der Vaart [Van00], Westling and McCormick
[WM15] prove asymptotic normality of variational estimators and discuss the sandwich
estimator of the variance.

Theorem [WM15]
Under additional regularity conditions (still satisfied for example when and are
restricted to compact sets), we have

where for

θ ψi

√n(θ̂
ve

− θ̄) → N (0,V (θ̄))
d

V (θ) = C(θ)−1D(θ)C(θ)−1

C(θ) = E[∇θθJ̄ (θ)] and D(θ) = E [(∇θJ̄ (θ))(∇θJ̄ (θ)⊺]

33 / 56

Variance : sandwich estimator (II)
We need estimations of and and

Practical computations chain rule

Caveat
For , requires the inversion of matrices with
rows/columns...
Let us first consider the estimation of only, with known variance

∇θθJ̄ (θ) C D

∇θθJ̄ (θ) = [∇θθJ − ∇θψJ(∇ψψJ)−1∇ψθJ] (θ, ψ̂) and ∇θJ̄ (θ) = ∇θJ(θ, ψ̂)

Ĉn(θ) =
n

∑
i=1

[∇θθJi − ∇θψi
Ji(∇ψiψi

Ji)
−1∇θψi

J
⊺

i] (θ, ψ̂i)

D̂n(θ) =
n

∑
i=1

[∇θJi∇θJ
⊺

i] (θ, ψ̂i)

1

n

1

n

θ = (B, Ω) Ĉn n (p2 + pd)

θ = B Ω−1

34 / 56

Reasonably fancy formula
Additional matrix algebra efforts and computational tricks give

and

 Practically not very useful since is unknown

Ongoing work

Derive the formula with unknown

Plugin-in in the formula of leads very poor results
Need to account for cross-terms in between and , and inverse with
large matrices: limited practical interest
Idea: use Jackknife resampling to estimate the variance

D̂n(θ) =
n

∑
i=1

[(Yi − Ai)(Yi − Ai)
⊺] ⊗ xix

⊺

i ∈ R
dp×dp1

n

Ĉn(θ) = −
n

∑
i=1

(Σ + diag(Ai)
−1 + diag(s

4
i)) ⊗ xix

⊺

i ∈ R
dp×dp1

n

1

2

⇝ Σ

Σ

Σ̂ Ĉn

∇θψi
Ji(θ, ψ̂i) Ω ψi

35 / 56

95% CI - sandwich coverage

Coverage seems ok with fixed variance matrix

36 / 56

Direct optimization of the likelihood

Gradient estimation with importance sampling

37 / 56

Consider the PLN-PCA variant
Useful for high-dimensional, large problems.

where is the dimension of the latent space. The model parameters encompass

The matrix of regression parameters ,
The matrix sending the latent variable from to .

If , , standard PLN

If , , PLN-PCA

We regularize by controling the number of parameters (or size of the subspace) with

Zi = B
⊺xi + CWi, Wi ∼ N (0, Iq)

Yi ∣ Zi ∼ P (exp(Zi))

q ≤ p

B = (βkj)1≤k≤d,1≤j≤p

C ∈ R
p×q Wi R

q
R
p

p = q θ = (B, Σ = CC
⊺)

q < p θ = (β,C)

q

38 / 56

Performance of V-EM for PLN-PCA

Running times for ` `.

PLN: convergence in a small number of iterations but with parameters to
optimize + inversion of
PLN-PCA: convergence for a large number of iterations, with parameters to
optimize + inversion of

n = 1000, q = 10, d = 1

O(np + p2)
Σ̂(p × p)

O(np + pq)
Σ̂(q × q)

39 / 56

Direct optimization
We already have an efficient V-EM, but without guarantees "out-of-the box".

Direct optimization by approximating the gradient of the objective

Algorithm principle
Ingredient 1: fancy SG ascent with variance reduction (e.g. Adagrad + SAGA)
Ingredient 2: Monte-Carlo/Importance sampling to estimate the gradient

∇θ

n

∑
i=1

log pθ(Yi) =
n

∑
i=1

∇θ log(∫
Rq

pθ(Yi|Wi)p(Wi)dWi)

=
n

∑
i=1

∇θ log EW (pθ(Yi|Wi))

40 / 56

Monte-Carlo estimation of the gradient

Gradient derivation (First Louis Formula)

Approximation via Importance Sampling
Our estimator of the numerator and the denominator are respectively, drawing ,

and the ratio can be seen as a self normalizing weighted IS approach:

∇θ log EW [pθ(Yi|W)] = =

= =

∇θEW [pθ(Yi|W)]

EW [pθ(Yi|W)]

EW [∇θpθ(Yi|W)]

EW [pθ(Yi|W)]

EW [pθ(Yi|W)∇θ log(pθ(Yi|W))]

EW [pθ(Yi|W)]

N̄

D̄

Vk ∼ ϕ(.)

N̄ =
ns

∑
k=1

pθ(Yi|Vk)∇θ log pθ(Yi|Vk), D̄ =
ns

∑
k=1

pθ(Yi|Vk),
1
ns

p(Vk)

ϕ(Vk)

1
ns

p(Vk)

ϕ(Vk)

N̄/D̄ =
ns

∑
k

~wk∇θ log pθ(Yi|Vk), wk = , ~wk = wk/∑
k

wk

1
ns

p(Vk)pθ(Yi|Vk)

ϕ(Vk)

41 / 56

How to choose the proposition law
Choose as close as possible as ,

Since is Gaussian, we choose Gaussian with

mean , estimated using IS with weights recycled from the previous
iterations.

covariance , estimated from the 2nd derivative taken in (explicit)

Expected theoretical guarantees
Gaussian proposition law does not give bounded weights and finite variance in theory
Student proposition law does, leading to theoretical guarantees on the estimator
In practice, Gaussian or Student proposition law gives the same effective sample size.

 CI intervals seems to work OK

ϕ

ϕ pθ(Y |W)p(W) ∝ pθ(W |Y)

p(W) ϕ

m = EW [W |Y]

Σ m

Ω−1 = −∇WW log pθ(Yi|W)p(W)∣∣∣W=m

⇝

42 / 56

Performance of Importance Sampling (1)
Varying

Running times for ` `, 250 iterations.

p

n = 300, q = 10, d = 1

43 / 56

Performance of Importance Sampling (2)
Varying

Running times for ` `, 250 iterations.

q

n = 300, p = 2000, d = 1

44 / 56

V-EM vs Importance Sampling

Example with , , Toeplitz (AR-like) covariance

orange: ELBO of the V-EM
red: log-likelihood found by IMPS at convergence
blue: log-likelihood computed with current V-EM estimates

n = p = 1000 d = 1, q = 10

45 / 56

Zero-inflated PLN

46 / 56

A zero-inflated PLN

Motivations
account for a large amount of zero, i.e. with single-cell data,
try to separate "true" zeros from "technical"/dropouts

The Model
Use two latent vectors and to model excess of zeroes and dependence structure

The unkwown parameters are

, the regression parameters (from the PLN component)
, the regression parameters (from the Bernoulli component)

, the variance-covariance matrix

 ZI-PLN is a mixture of PLN and Bernoulli distribution with shared covariates.

Wi Zi

Zi ∼ N (oi + x
⊤
i

B, Σ)

Wij ∼ B(logit−1(x
⊤
i B

0
j))

Yij |Wij,Zij ∼ Wijδ0 + (1 − Wij)P (exp{Zij}) ,

B

B
0

Σ

⇝

47 / 56

ZI-PLN identifiability
Consider the standard ZIPLN model (i.e. not the ZIPLN-regression model) with 1 sample:

Proposition
The standard ZIPLN model defined above with parameter and parameter
space is identifiable.

Proof. We used the moments of to prove identifiability and rely on the following results
for Gaussian and Poisson distributions:

If , then
If then

Each coordinate of can be expressed as a simple functions of the (first three) moments of
 and thus .

(Wj)j=1…p
∼ B

⊗(π) = B(π1) ⊗ …B(πp)

(Zj)j=1…p
∼ Np(μ, Σ)

Yj|Wj,Zj ∼ (1 − Wj)P(eZj) + Wjδ0

θ = (π,μ, Σ)
(0, 1)p × R

p × S
++
p

Y

U ∼ N (μ,σ2) E[eU] = exp(μ + σ2/2)
U ∼ P(λ) E[U] = λ E[U 2] = λ(1 + λ) E[U 2] = λ(1 + 3λ + λ2)

θ

pθ pθ = pθ′ ⇒ θ = θ′

48 / 56

ZI-PLN Inference
Same routine...

Variational approximation

with

Variational lower bound
Let and , then

Property: is separately concave in , and .

p(Zi, WiYi) ≈ qψ(Zi, Wi) ≈ qψ1
(Zi)qψ2

(Wi)

qψ1
(Zi) = N (Zi; mi, diag(si ∘ si)), qψ2

(Wi) = ⊗p

j=1B(Wij,πij)

θ = (B, B
0, Σ) ψ = (M, S, Π)

J(θ,ψ) = log pθ(Y) − KL(pθ(. |Y)∥qψ(.))

= Eqψ
log pθ(Z, W, Y) − Eqψ

log qψ(Z, W)

= Eqψ
log pθ(Y|Z, W) + Eqψ1

log pθ(Z) + Eqψ2
log pθ(W)

− Eqψ1
log qψ1

(Z) − Eqψ2
log qψ2

(W)

J θ ψ1 ψ2

49 / 56

Optimizaton

A sparse criterion
Recall that . Sparsity allows to control the number of parameters:

Alternate optimization
(Stochastic) Gradient-descent on
Closed-form for posterior probabilities
Inverse covariance

if ,

if , penalized MLE (Graphical-Lasso with as input)
PLN regression coefficient

if ,
if , vectorize and solve a penalized least-squared problem

Initialize with logistic regression on , with Poisson regression

θ = (B, B
0, Ω = Σ

−1)

arg min
θ,ψ

J(θ,ψ) + λ1∥B∥1 + λ2∥Ω∥1 (+λ1∥B
0∥1)

B
0, M, S

Π

Ω

λ2 = 0 Σ̂ = n−1 [(M − XB)⊤(M − XB) + S̄
2
]

λ2 > 0 ℓ1 ⇝ Σ̂

B

λ1 = 0 B̂ = [X⊤
X]−1X

⊤
M

λ1 > 0 ℓ1

B0 δ0(Y) B

50 / 56

A quick example in genomics (1)

scRNA data set
The dataset scRNA contains the counts of the 500 most varying transcripts in the mixtures of
5 cell lines in human liver (obtained with standard 10x scRNAseq Chromium protocol).

We subsample 500 random cells and the keep the 200 most varying genes

library(PLNmodels); library(ZIPLN)
data(scRNA); set.seed(1234)
scRNA <- scRNA[sample.int(nrow(scRNA), 500),]
scRNA$counts <- scRNA$counts[, 1:200]
scRNA$counts %>% as_tibble() %>% rmarkdown::paged_table()

KRT81
<int>

AKR1B10
<int>

LCN2
<int>

AKR1C2
<int>

ALDH1A1
<int>

AGR2
<int>

AKR1C3
<int>

GPX2
<int>

S100A4
<int>

SAA1
<int>

1 0 1 0 0 2 1 0 7 0
3 1 3 0 0 0 0 0 1 0

117 82 0 41 21 47 50 45 91 0
1 2 2 0 0 0 3 0 2 1
2 1 0 0 2 0 2 2 5 1

51 / 56

A quick example in genomics (2)

Model fits
We adjust the standard PLN model and the ZI-PLN model with some sparsity on the
precision matrix:

system.time(myPLN <-
 PLN(counts ~ 1 + offset(log(total_counts)),
 data = scRNA, control = list(trace = 0)))

user system elapsed
126.280 0.098 32.049

system.time(myZIPLN <-
 ZIPLN(counts ~ 1 + offset(log(total_counts)), rho = .1,
 data = scRNA, control = list(trace = 0)))

user system elapsed
86.317 0.062 13.522

52 / 56

A quick example in genomics (3)

ZI-PLN seems to be less variant for predicting small counts

53 / 56

A quick example in genomics (4)
prcomp(myZIPLN$latent) %>% factoextra::fviz_pca_ind(col.ind = scRNA$cell_line)

54 / 56

Conclusion

Summary
PLN = generic model for multivariate count data analysis
Flexible modeling of the covariance structure, allows for covariates
Efficient V-EM algorithm
Variational estimator is asymptotically normal (and hopefully unbiased) with
computable covariance matrix.
ZI-PLN reduces (some) problems induced by high sparsity in the data

Work in progress
Caracterisation of Variational Estimator
Direct likelihood optim (Stochastic Gradient + Important Sampling)
Optimisation guarantee for coupling adpative SGD + variance reduction
Connection/Comparison with VAE with e.g Poisson neg log-likelihood as loss

Advertisement
https://computo.sfds.asso.fr, a journal promoting reproducible research in ML and stat.

55 / 56

https://computo.sfds.asso.fr/

References
Aitchison, J. and C. Ho (1989). "The multivariate Poisson-log normal
distribution". In: Biometrika 76.4, pp. 643-653.

Chiquet, J., M. Mariadassou, and S. Robin (2018). "Variational
inference for probabilistic Poisson PCA". In: The
Annals of Applied
Statistics 12, pp. 2674-2698. URL:
http://dx.doi.org/10.1214/18-AOAS1177.

Chiquet, J., M. Mariadassou, and S. Robin (2019). "Variational
inference for sparse network reconstruction from
count data". In:
Proceedings of the 19th International Conference on Machine Learning
(ICML 2019).

Chiquet, J., M. Mariadassou, and S. Robin (2021). "The
Poisson-Lognormal Model as a Versatile Framework for the
Joint Analysis
of Species Abundances". In: Frontiers in Ecology and Evolution 9.
DOI:
10.3389/fevo.2021.588292.

Facon, B., A. Hafsi, M. C. de la Masselière, et al. (2021). "Joint
species distributions reveal the combined effects of
host plants,
abiotic factors and species competition as drivers of species
abundances in fruit flies". In:
Ecological Letters. DOI:
10.1111/ele.13825.

Falbel, D. and J. Luraschi (2022). torch: Tensors and Neural Networks
with 'GPU' Acceleration.
https://torch.mlverse.org/docs,
https://github.com/mlverse/torch.

Inouye, D. I., E. Yang, G. I. Allen, et al. (2017). "A review of
multivariate distributions for count data derived from
the Poisson
distribution". In: Wiley Interdisciplinary Reviews: Computational
Statistics 9.3.

Jakuschkin, B., V. Fievet, L. Schwaller, et al. (2016). "Deciphering
the pathobiome: intra-and interkingdom
interactions involving the
pathogen Erysiphe alphitoides". In: Microbial ecology 72.4, pp.
870-880.

Johnson, S. G. (2011). The NLopt nonlinear-optimization package. URL:
http://ab-initio.mit.edu/nlopt.

56 / 56

http://dx.doi.org/10.1214/18-AOAS1177
https://doi.org/10.3389%2Ffevo.2021.588292
https://doi.org/10.1111%2Fele.13825
https://torch.mlverse.org/docs
https://github.com/mlverse/torch
http://ab-initio.mit.edu/nlopt

