Poisson lognormal models for count data

Variational inference, Optimization

J. Chiquet, M. Mariadassou, S. Robin

+ B. Batardière, J. Kwon, J. Stoehr

MIA Paris-Saclay, AgroParisTech, INRAE Last update 14 November, 2022

https://pln-team.github.io/PLNmodels

Outline

- 1. Multivariate Poisson lognormal models
- 2. Optimization with Variational inference
- 3. Properties of the Variational estimators
- 4. Direct Optimization with Important Sampling
- 5. Zero-Inflated PLN

Multivariate Poisson lognormal models

Motivations, Framework

Models for multivariate count data

If we were in a Gaussian world...

The general linear model [MKB79] would be appropriate! For each sample $i=1,\ldots,n$,

$$egin{array}{c} \mathbf{Y}_i = \mathbf{x}_i^ op \mathbf{B} + \mathbf{o}_i + oldsymbol{arepsilon}_i + oldsymbol{arepsilon}_i, \quad oldsymbol{arepsilon}_i \sim \mathcal{N}(\mathbf{0}_p, \mathbf{v}_i) \ & ext{abundances} \end{array}$$

null covariance ⇔ independence → uncorrelated species/transcripts do not interact

This model gives birth to Principal Component Analysis, Discriminant Analysis, Gaussian Graphical Models, Gaussian Mixture models and many others . . .

With count data...

There is no generic model for multivariate counts

- Data transformation (log, $\sqrt{\ }$): quick and dirty
- Non-Gaussian multivariate distributions [Ino+17]: do not scale to data dimension yet
- Latent variable models: interaction occur in a latent (unobserved) layer

The Poisson Lognormal model (PLN)

The PLN model [AH89] is a multivariate generalized linear model, where

- the counts \mathbf{Y}_i are the response variables
- the main effect is due to a linear combination of the covariates \mathbf{x}_i
- a vector of offsets \mathbf{o}_i can be specified for each sample.

$$\mathbf{Y}_i | \mathbf{Z}_i \sim \mathcal{P}\left(\exp \mathbf{Z}_i
ight),$$

$$\mathbf{Y}_i | \mathbf{Z}_i \sim \mathcal{P}\left(\exp \mathbf{Z}_i
ight), \qquad \mathbf{Z}_i \sim \mathcal{N}(\mathbf{o}_i + \mathbf{x}_i^{ op} \mathbf{B}, \mathbf{\Sigma}),$$

The unkwown parameters are

- **B**, the regression parameters
- Σ , the variance-covariance matrix

Stacking all individuals together,

- **Y** is the $n \times p$ matrix of counts
- **X** is the $n \times d$ matrix of design
- $oldsymbol{\cdot}$ $oldsymbol{O}$ is the n imes p matrix of offsets

Properties: over-dispersion, arbitrary-signed covariances

- mean: $\mathbb{E}(Y_{ij}) = \expig(o_{ij} + \mathbf{x}_i^ op \mathbf{B}_{\cdot j} + \sigma_{ij}/2ig) > 0$
- variance: $\mathbb{V}(Y_{ij}) = \mathbb{E}(Y_{ij}) + \mathbb{E}(Y_{ij})^2 \left(e^{\sigma_{jj}} 1\right) > \mathbb{E}(Y_{ij})$
- covariance: $\mathrm{Cov}(Y_{ij},Y_{ik})=\mathbb{E}(Y_{ij})\mathbb{E}(Y_{ik})\left(e^{\sigma_{jk}}-1
 ight)$.

Natural extensions

Various tasks of multivariate analysis

• Dimension Reduction: rank constraint matrix **\(\Sigma**.

$$\mathbf{Z}_i \sim \mathcal{N}(oldsymbol{\mu}, oldsymbol{\Sigma} = \mathbf{C}\mathbf{C}^ op), \quad \mathbf{C} \in \mathcal{M}_{pk} ext{ with orthogonal columns.}$$

• Classification: maximize separation between groups with means

$$\mathbf{Z}_i \sim \mathcal{N}(oldsymbol{\mu}_k \mathbf{1}_{\{i \in k\}}, oldsymbol{\Sigma}), \quad ext{for known memberships.}$$

• Clustering: mixture model in the latent space

$$\mathbf{Z}_i \mid i \in k \sim \mathcal{N}(oldsymbol{\mu}_k, oldsymbol{\Sigma}_k), \quad ext{for unknown memberships.}$$

Network inference: sparsity constraint on inverse covariance.

$$\mathbf{Z}_i \sim \mathcal{N}(oldsymbol{\mu}, oldsymbol{\Sigma} = oldsymbol{\Omega}^{-1}), \quad \|oldsymbol{\Omega}\|_1 < c.$$

• Variable selection: sparsity constraint on regression coefficients

$$\mathbf{Z}_i \sim \mathcal{N}(\mathbf{x}_i^ op \mathbf{B}, \mathbf{\Sigma}), \quad \|\mathbf{B}\|_1 < c.$$

Illustration on ecological data (eDNA)

Oaks powdery mildew data set

Jakuschkin, Fievet, Schwaller, Fort, Robin, and Vacher [Jak+16] Study effects of the pathogen *E.Aphiltoïdes* (mildew) wrt bacterial and microbial communities

Species Abundances

- ullet Microbial communities sampled on the surface of n=116 oak leaves
- ullet Communities sequenced and cleaned resulting in p=114 OTUs (66 bacteria, 48 fungi).

Covariates and offsets

Characterize the samples and the sampling, most important being

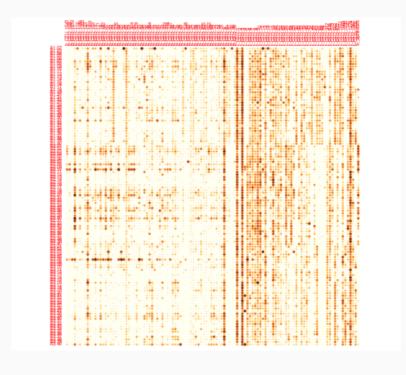
- tree: Tree status with respect to the pathogen (susceptible, intermediate or resistant)
- distT0ground: Distance of the sampled leaf to the base of the ground
- orientation: Orientation of the branch (South-West SW or North-East NE)
- readsTOTfun: Total number of ITS1 reads for that leaf
- readsT0Tbac: Total number of 16S reads for that leaf

Abundance table

Data table

b_OTU_112	b_OTU_1191	b_OTU_1200
<int></int>	<int></int>	<int></int>
146	1	6
0	1	0
0	0	0
1	1	0
1	1	1
2	20	0
2	3	0
4	3	0
42	0	7
2	0	0
1-10 of 116 I	Previous 1	2 3 12 Next

Matrix of count (log-scale)



PLN with offsets and covariates (1)

Offset: modeling sampling effort

The predefined offset uses the total sum of reads, accounting for technologies specific to fungi and bacteria:

```
M01_{oaks} \leftarrow PLN(Abundance \sim 1 + offset(log(Offset)) , oaks)
```

Covariates: tree and orientation effects ('ANOVA'-like)

The tree status is a natural candidate for explaining a part of the variance.

- We chose to describe the tree effect in the regression coefficient (mean)
- A possibly spurious effect regarding the interactions between species (covariance).

```
M11_{oaks} \leftarrow PLN(Abundance \sim 0 + tree + offset(log(Offset)), oaks)
```

What about adding more covariates in the model, e.g. the orientation?

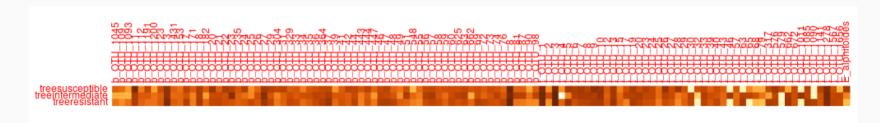
```
M21_{oaks} \leftarrow PLN(Abundance \sim 0 + tree + orientation + offset(log(Offset)), oaks)
```

PLN with offsets and covariates (2)

There is a clear gain in introducing the tree covariate in the model:

	nb_param	loglik	BIC	ICL
M01	6669	-32276.98	-48127.83	-52148.35
M11	6897	-31510.75	-47903.50	-51631.08
M21	7011	-31422.85	-48086.56	-51703.18

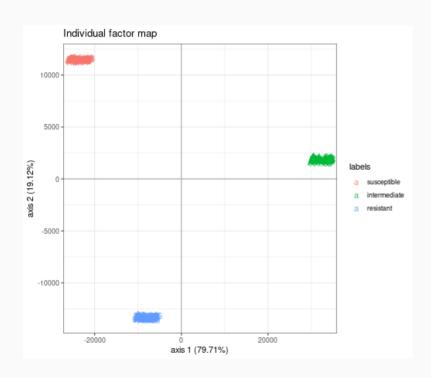
Looking at the coefficients ${f B}$ associated with tree bring additional insights:

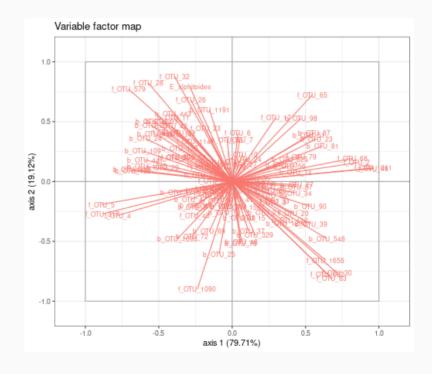


Discriminant Analysis

Use the tree variable for grouping (grouping is a factor of group to be considered)

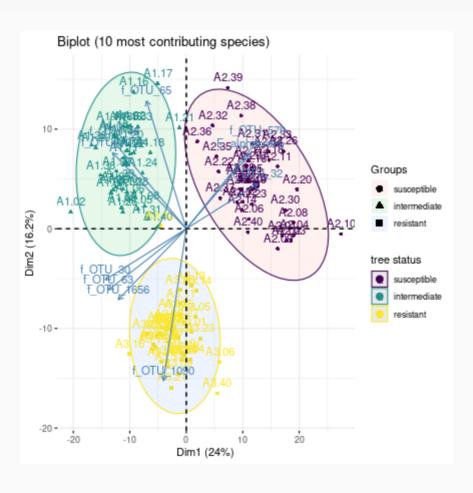
```
myLDA_tree ←
PLNLDA(Abundance ~ 1 + offset(log(Offset)), grouping = oaks$tree, data = oaks)
```





A PCA analysis of the oaks data set

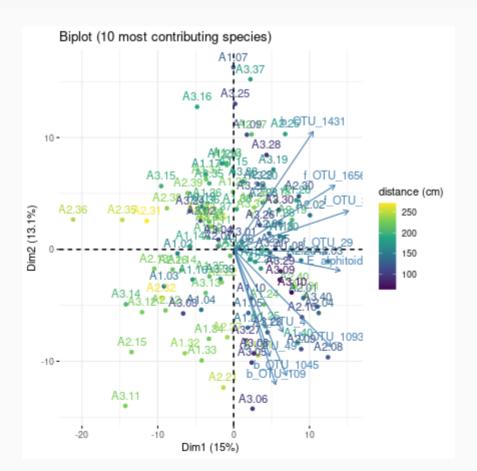
PCA_offset ← PLNPCA(Abundance ~ 1 + offset(log(Offset)), data = oaks, ranks = 1:30)



PCA: removing covariate effects

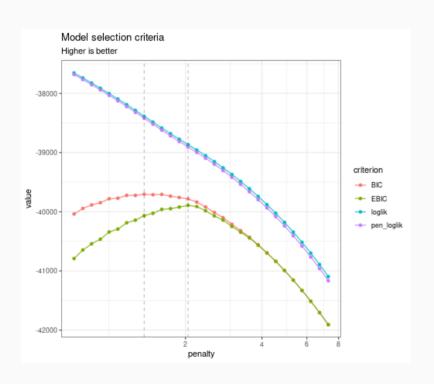
To hopefully find some hidden effects in the data, we can try to remove confounding ones:

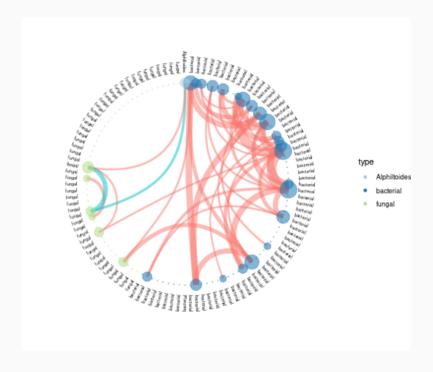
```
PCA_tree ←
  PLNPCA(Abundance ~ 0 + tree + offset(log(Offset)), data = oaks, ranks = 1:30)
```



Network inference

networks ← PLNnetwork(Abundance ~ 0 + tree + offset(log(Offset)), data = oaks)





Availability

Help and documentation

- github group https://github.com/pln-team
- PLNmodels website https://pln-team.github.io/PLNmodels

R/C++ Package PLNmodels

Last stable release on CRAN, development version available on GitHub).

```
install.packages("PLNmodels")
remotes::install_github("PLN-team/PLNmodels@dev")

library(PLNmodels)
packageVersion("PLNmodels")

## [1] '0.11.7.9500'
```

Python module pyPLNmodels

A Python/PyTorch implementation is about to be published

Variational inference for standard PLN

Optimisation

Inference: general ingredients

Estimate $heta=(\mathbf{B}, \mathbf{\Sigma})$, predict the \mathbf{Z}_i , while the model marginal likelihood is

$$p_{ heta}(\mathbf{Y}_i) = \int_{\mathbb{R}_p} \prod_{j=1}^p p_{ heta}(Y_{ij}|Z_{ij}) \, p_{ heta}(\mathbf{Z}_i) \mathrm{d}\mathbf{Z}_i.$$

Expectation-Maximization

With $\mathcal{H}(p) = -\mathbb{E}_p(\log(p))$ the entropy of p,

$$\log p_{ heta}(\mathbf{Y}) = \mathbb{E}_{p_{ heta}(\mathbf{Z} \,|\, \mathbf{Y})}[\log p_{ heta}(\mathbf{Y}, \mathbf{Z})] + \mathcal{H}[p_{ heta}(\mathbf{Z} \,|\, \mathbf{Y})]$$

EM requires to evaluate (some moments of) $p_{\theta}(\mathbf{Z} \mid \mathbf{Y})$, but there is no close form!

Variational approximation [WJ08]

Use a proxy q_{ψ} of $p_{ heta}(\mathbf{Z} \,|\, \mathbf{Y})$ minimizing a divergence in a class \mathcal{Q} (e.g, Küllback-Leibler divergence)

$$q_{\psi}(\mathbf{Z})^{\star}rg\min_{q\in\mathcal{Q}}D\left(q(\mathbf{Z}),p(\mathbf{Z}|\mathbf{Y})
ight), ext{ e.g., } D(.\,,.\,)=KL(.\,,.\,)=\mathbb{E}_{q_{\psi}}\left[\lograc{q(z)}{p(z)}
ight].$$

Inference: specific ingredients

Consider ${\mathcal Q}$ the class of diagonal multivariate Gaussian distributions:

$$\left\{q:\, q(\mathbf{Z}) = \prod_i q_i(\mathbf{Z}_i),\, q_i(\mathbf{Z}_i) = \mathcal{N}\left(\mathbf{Z}_i; \mathbf{m}_i, \operatorname{diag}(\mathbf{s}_i \circ \mathbf{s}_i)
ight), oldsymbol{\psi}_i = \left(\mathbf{m}_i, \mathbf{s}_i
ight) \in \mathbb{R}_p imes \mathbb{R}_p
ight\}$$

and maximize the ELBO (Evidence Lower BOund)

$$egin{aligned} J(heta,\psi) &= \log p_{ heta}(\mathbf{Y}) - KL[q_{\psi}(\mathbf{Z})||p_{ heta}(\mathbf{Z}|\mathbf{Y})] \ &= \mathbb{E}_{\psi}[\log p_{ heta}(\mathbf{Y},\mathbf{Z})] + \mathcal{H}[q_{\psi}(\mathbf{Z})] \ &= rac{1}{n} \sum_{i=1}^n J_i(heta,\psi_i), \end{aligned}$$

where, letting $\mathbf{A}_i = \mathbb{E}_{q_i}[\exp(Z_i)] = \expig(\mathbf{o}_i + \mathbf{m}_i + rac{1}{2}\mathbf{s}_i^2ig)$, we have

$$egin{aligned} J_i(heta,\psi_i) = & \mathbf{Y}_i^\intercal(\mathbf{o}_i + \mathbf{m}_i) - \left(\mathbf{A}_i - rac{1}{2}\mathrm{log}(\mathbf{s}_i^2)
ight)^\intercal \mathbf{1}_p + rac{1}{2}|\log|\mathbf{\Omega}| \ & - rac{1}{2}(\mathbf{m}_i - \mathbf{\Theta}\mathbf{x}_i)^\intercal \mathbf{\Omega}(\mathbf{m}_i - \mathbf{\Theta}\mathbf{x}_i) - rac{1}{2}\mathrm{diag}(\mathbf{\Omega})^\intercal \mathbf{s}_i^2 + \mathrm{cst} \end{aligned}$$

Resulting Variational EM

Alternate until convergence between

ullet VE step: optimize $oldsymbol{\psi}$ (can be written individually)

$$\psi_i^{(h)} = rg \max J_i(heta^{(h)}, \psi_i) \left(= rg \min_{q_i} KL[q_i(\mathbf{Z}_i) \,||\, p_{ heta^h}(\mathbf{Z}_i \,|\, \mathbf{Y}_i)]
ight)$$

• M step: optimize θ

$$heta^{(h)} = rg \max rac{1}{n} \sum_{i=1}^n J_{Y_i}(heta, \psi_i^{(h)})$$

We end up with a M-estimator:

$$\hat{ heta}^{ ext{ve}} = rg \max_{ heta} \left(rac{1}{n} \sum_{i=1}^n \sup_{\psi_i} J_i(heta, \psi_i)
ight) = rg \max_{ heta} \underbrace{\left(rac{1}{n} \sum_{i=1}^n ar{J}_i(heta)
ight)}_{ar{J}_n(heta)}$$

where $ar{J}_i(heta) = \sup_{\psi_i} J_i(heta,\psi_i)$ is the *profiled* objective function.

Optimization of simple PLN models

Property of the objective function

The ELBO $J(\theta,\psi)$ is bi-concave, i.e.

- ullet concave wrt $\psi=(\mathbf{M},\mathbf{S})$ for given heta
- ullet convace wrt $heta=(oldsymbol{\Sigma}, oldsymbol{B})$ for given ψ

but not jointly concave in general.

M-step: analytical

$$\hat{\mathbf{B}} = \left(\mathbf{X}^{ op}\mathbf{X}
ight)^{-1}\mathbf{X}\mathbf{M}, \quad \hat{\mathbf{\Sigma}} = rac{1}{n}\Big(\mathbf{M} - \mathbf{X}\hat{\mathbf{B}}\Big)^{ op}\Big(\mathbf{M} - \mathbf{X}\hat{\mathbf{B}}\Big) + rac{1}{n}\mathrm{diag}(\mathbf{1}^{ op}\mathbf{S}^2)$$

VE-step: gradient ascent

$$rac{\partial J(\psi)}{\partial \mathbf{M}} = (\mathbf{Y} - \mathbf{A} - (\mathbf{M} - \mathbf{X}\mathbf{B})\mathbf{\Omega})\,, \qquad rac{\partial J(\psi)}{\partial \mathbf{S}} = rac{1}{\mathbf{S}} - \mathbf{S} \circ \mathbf{A} - \mathbf{S}\mathrm{D}_{\mathbf{\Omega}}.$$

→ Same routine for other PLN variants.

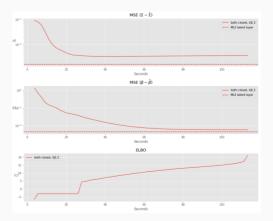
Implementations

Medium scale problems (R/C++ package)

- **algorithm**: conservative convex separable approximations [Sva02]
- **implementation**: NLopt nonlinear-optimization library [Joh11] \sim Up to thousands of sites (n pprox 1000s), hundreds of species (p pprox 100s)

Large scale problems (Python/Pytorch module)

- **algorithm**: Rprop (gradient sign + adaptive variable-specific update) [RB93]
- **implementation**: torch with GPU auto-differentiation [FL22; Pas+17]
 - ightsquigarrow Up to npprox 100,000 and ppprox 10,000s



n = 10,000, p = 2,000, d = 2 (running time: 1 min 40s)

Variational estimators of standard PLN

Properties

Estimator Bias and consistency

M-estimation framework [Van00]

Let $\hat{\psi}_i=\hat{\psi}_i(heta,\mathbf{Y}_i)=rg\max_{\psi}J_i(heta,\psi)$ and consider the stochastic map $ar{J}_n$ defined by

$$ar{J}_n \ : \quad heta \mapsto rac{1}{n} \sum_{i=1}^n J_i(heta, \hat{\psi}_i) \stackrel{\Delta}{=} rac{1}{n} \sum_{i=1}^n ar{J}_i(heta)$$

M-estimation suggests that $\hat{\theta}^{\mathrm{ve}} = \arg\max_{\theta} \bar{J}_n(\theta)$ should converge to $\bar{\theta} = \arg\max_{\theta} \bar{J}(\theta)$ where $\bar{J}(\theta) = \mathbb{E}_{\theta^\star}[\bar{J}_Y(\theta)] = \mathbb{E}_{\theta^\star}[J_Y(\theta,\hat{\psi}(\theta,Y))]$.

Theorem [WM15]

In this line, Westling and McCormick [WM15] show that under regularity conditions ensuring that \bar{J}_n is smooth enough (e.g. when θ and ψ_i are restricted to compact sets),

$$\hat{ heta}^{ ext{ve}} \xrightarrow[n o +\infty]{a.e.} ar{ heta}$$

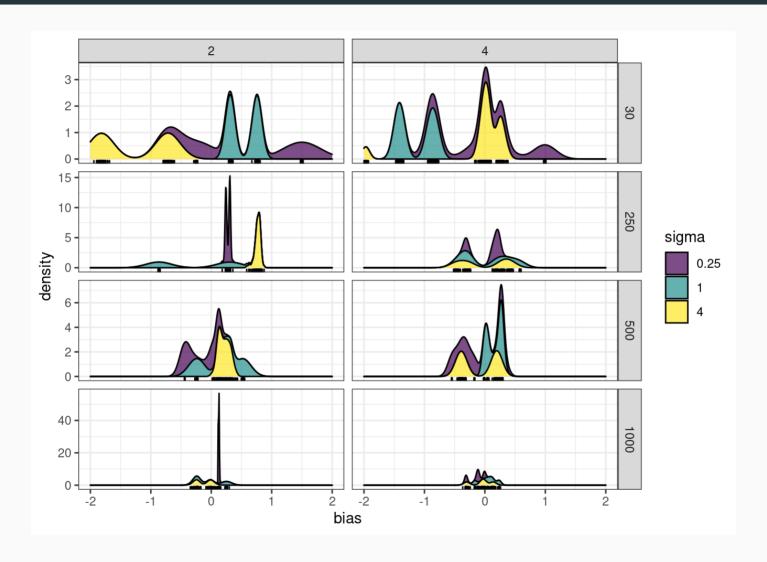
Open question: $ar{ heta}= heta^\star$? No formal results as $ar{J}$ is untractable but numerical evidence suggests so.

Numerical study

Study Bias of the estimator of $\hat{m{B}}$

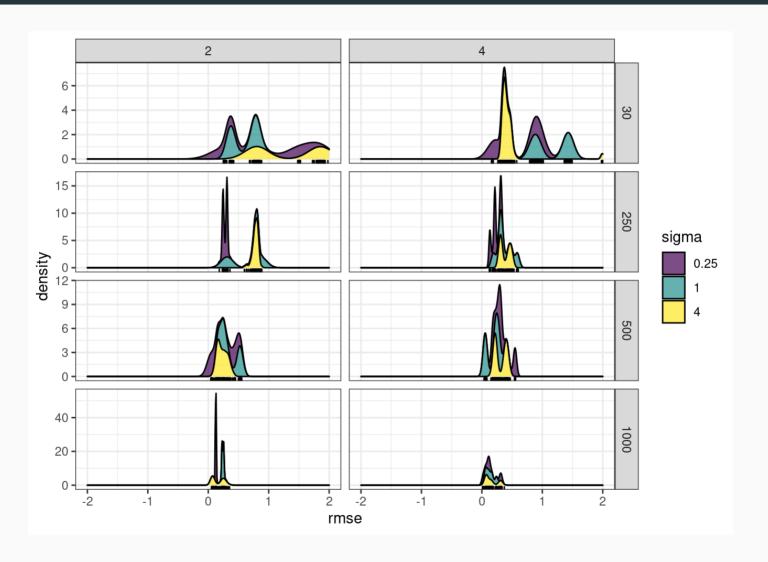
- ullet number of variables p=50
- ullet number of covariates $d \in \{2,4\}$
- ullet number of samples $n \in \{30, 250, 500, 1000\}$
- ullet sampling effort (TSS) $pprox 10^4$
- ullet $oldsymbol{\Sigma}$ as $\sigma_{jk}=\sigma^2
 ho^{|j-k|}$, with ho=0.2
- ${f B}$ with entries sampled from ${\cal N}(0,1/d)$
- noise level $\sigma^2 \in \{0.25, 1, 4\}$
- 100 replicates

Bias of $\hat{m{B}}$



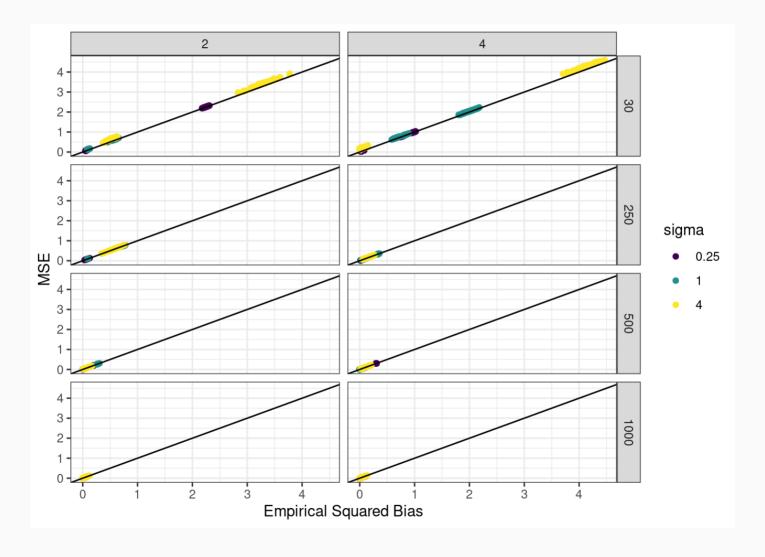
Bias vanishes with n

Root mean square error of $\hat{m{B}}$



RMSE vanishes with n

Contribution of bias in RMSE of $\hat{\mathbf{B}}$



Bias contribute in large part of the MSE

Estimator Variance

Motivation: Wald test

Test $\mathcal{H}_0: R\theta = r_0$ with the statistic

$$(R\hat{ heta}-r_0)^ op \Big[nR\hat{\mathbb{V}}(\hat{ heta})R^ op\Big]^{-1}(R\hat{ heta}-r_0) \sim \chi_k^2 \quad ext{where} \quad k= ext{rank}(R).$$

If $\hat{m{ heta}}$ is the MLE, then the Fisher Information matrix

$$I(heta) = -\mathbb{E}_{ heta}\left[rac{\partial^2 \log \ell(heta;x)}{\partial heta^2}
ight]$$

can be used to build an approximation of $n\mathbb{V}(\hat{ heta})^{-1}$.

Application

Derive confidence intervals for the inverse covariance $oldsymbol{\Omega}$ and the regression parameters $oldsymbol{B}$.

Variance: naïve approach

Do as if $\hat{ heta}^{ ext{ve}}$ was a MLE and $ar{J}_n$ the log-likelihood.

Variational Fisher Information

The Fisher information matrix is given by (from the Hessian of J) by

$$I_n(\hat{ heta}^{ ext{ve}}) = \left(egin{array}{cc} rac{1}{n}(\mathbf{I}_p \otimes \mathbf{X}^ op) ext{diag}(ext{vec}(\mathbf{A}))(\mathbf{I}_p \otimes \mathbf{X}) & \mathbf{0} \ \mathbf{0} & rac{1}{2}\mathbf{\Omega}^{-1} \otimes \mathbf{\Omega}^{-1} \end{array}
ight)$$

and can be inverted blockwise to estimate $\mathbb{V}(\hat{ heta})$.

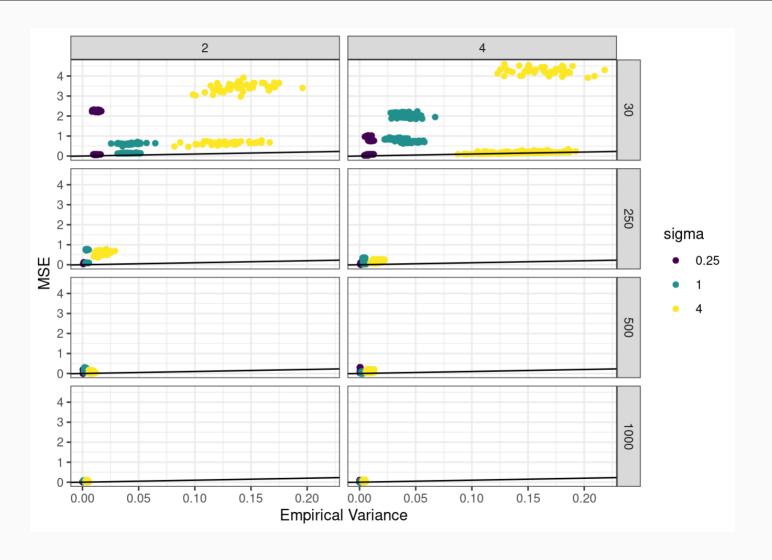
Wald test and coverage

$$\hat{\mathbb{V}}(B_{kj}) = [n(\mathbf{X}^ op \mathrm{diag}(\mathrm{vec}(\hat{A}_{.j}))\mathbf{X})^{-1}]_{kk}, \qquad \hat{\mathbb{V}}(\Omega_{kl}) = 2\hat{\Omega}_{kk}\hat{\Omega}_{ll}$$

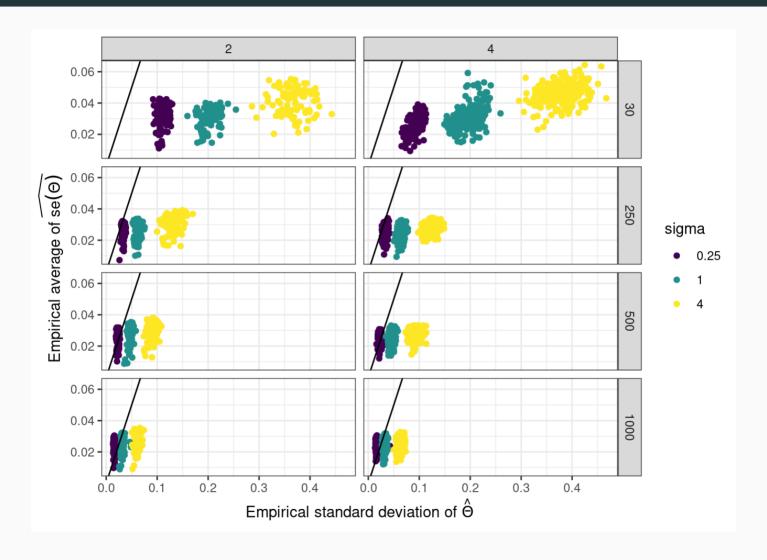
The confidence intervals at level lpha are given by

$$B_{kj} = \hat{B}_{kj} \pm rac{q_{1-lpha/2}}{\sqrt{n}} \sqrt{\hat{\mathbb{V}}(B_{kj})}, \qquad \Omega_{kl} = \hat{\Omega}_{kl} \pm rac{q_{1-lpha/2}}{\sqrt{n}} \sqrt{\hat{\mathbb{V}}(\Omega_{kl})}.$$

Contribution of variance in RMSE of ${f B}$

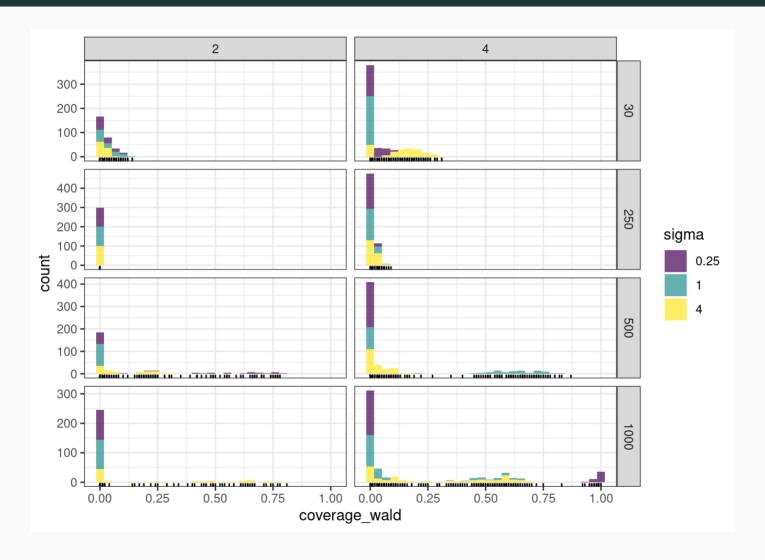


Variance: empirical vs variational



Variance underestimated...

95% confident interval - coverage



No trusted confidence intervals can be derived out-of-the box

Variance: sandwich estimator (I)

Pursuing on the M-estimation theory of Van der Vaart [Van00], Westling and McCormick [WM15] prove asymptotic normality of variational estimators and discuss the sandwich estimator of the variance.

Theorem [WM15]

Under additional regularity conditions (still satisfied for example when heta and ψ_i are restricted to compact sets), we have

$$\sqrt{n}(\hat{ heta}^{ ext{ve}}-ar{ heta})\overset{d}{
ightarrow}\mathcal{N}(0,V(ar{ heta}))$$

where $V(heta) = C(heta)^{-1} D(heta) C(heta)^{-1}$ for

$$C(heta) = \mathbb{E}[
abla_{ heta}ar{J}(heta)] \quad ext{and} \quad D(heta) = \mathbb{E}\left[(
abla_{ heta}ar{J}(heta))(
abla_{ heta}ar{J}(heta)^{\intercal}
ight]$$

Variance: sandwich estimator (II)

We need estimations of $abla_{ heta heta}ar{J}(heta)$ and C and D

Practical computations chain rule

Caveat

- ullet For $heta=(\mathbf{B},oldsymbol{\Omega})$, \hat{C}_n requires the inversion of n matrices with (p^2+pd) rows/columns...
- ullet Let us first consider the estimation of $heta={f B}$ only, with <code>known variance</code> ${f \Omega}^{-1}$

Reasonably fancy formula

Additional matrix algebra efforts and computational tricks give

$$\hat{D}_n(heta) = rac{1}{n} \sum_{i=1}^n \left[(\mathbf{Y}_i - \mathbf{A}_i) (\mathbf{Y}_i - \mathbf{A}_i)^\intercal
ight] \otimes \mathbf{x}_i \mathbf{x}_i^\intercal \in \mathbb{R}^{dp imes dp}$$

and

$$\hat{C}_n(heta) = -rac{1}{n} \sum_{i=1}^n \left(\mathbf{\Sigma} + ext{diag}(\mathbf{A}_i)^{-1} + rac{1}{2} ext{diag}(\mathbf{s}_i^4)
ight) \otimes \mathbf{x}_i \mathbf{x}_i^\intercal \in \mathbb{R}^{dp imes dp}$$

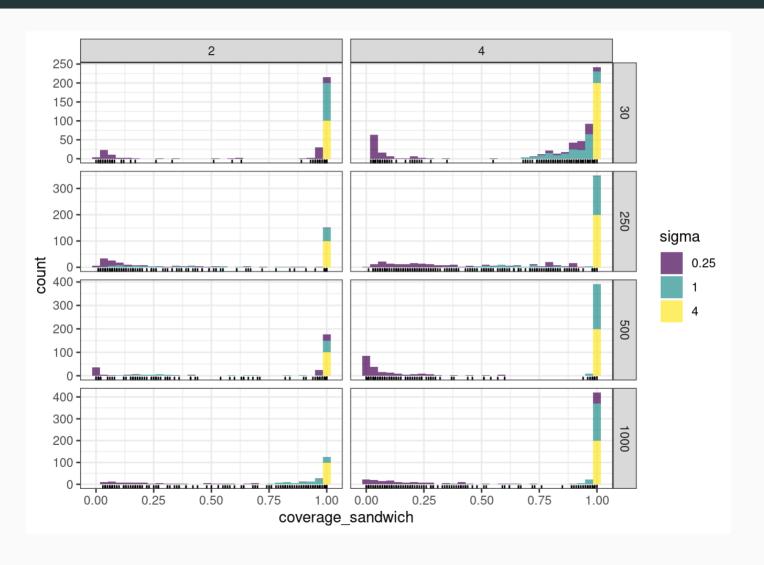
ightsquigarrow Practically not very useful since Σ is unknown

Ongoing work

Derive the formula with unknown Σ

- ullet Plugin-in $\hat{\Sigma}$ in the formula of \hat{C}_n leads $\overline{ ext{very}}$ poor results
- Need to account for cross-terms in $\nabla_{\theta\psi_i}J_i(\theta,\hat{\psi}_i)$ between Ω and ψ_i , and inverse with large matrices: limited practical interest
- Idea: use Jackknife resampling to estimate the variance

95% CI - sandwich coverage



Coverage seems ok with fixed variance matrix

Direct optimization of the likelihood

Gradient estimation with importance sampling

Consider the PLN-PCA variant

Useful for high-dimensional, large problems.

$$egin{aligned} \mathbf{Z}_i &= \mathbf{B}^\intercal x_i + \mathbf{C} W_i, & W_i \sim \mathcal{N}\left(0, I_q
ight) \ \mathbf{Y}_i \mid \mathbf{Z}_i \sim \mathcal{P}\left(\exp(\mathbf{Z}_i)
ight) \end{aligned}$$

where $q \leq p$ is the dimension of the latent space. The model parameters encompass

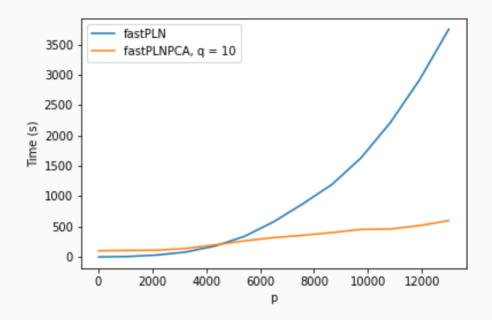
- ullet The matrix of regression parameters ${f B}=(eta_{kj})_{1\leq k\leq d, 1\leq j\leq p}$,
- ullet The matrix $\mathbf{C} \in \mathbb{R}^{p imes q}$ sending the latent variable W_i from \mathbb{R}^q to \mathbb{R}^p .

If
$$p=q$$
, $heta=(\mathbf{B},\Sigma=\mathbf{C}\mathbf{C}^\intercal)$, $rac{\mathsf{standard}\;\mathsf{PLN}}{\mathsf{Standard}\;\mathsf{PLN}}$

If
$$q < p$$
, $heta = (eta, C)$, `PLN-PCA`

We regularize by controling the number of parameters (or size of the subspace) with q

Performance of V-EM for PLN-PCA



Running times for n = 1000, q = 10, d = 1.

- **PLN**: convergence in a small number of iterations but with $\mathcal{O}(np+p^2)$ parameters to optimize + inversion of $\hat{\Sigma}(p imes p)$
- **PLN-PCA**: convergence for a large number of iterations, with $\mathcal{O}(np+pq)$ parameters to optimize + inversion of $\hat{\Sigma}(q imes q)$

Direct optimization

We already have an efficient V-EM, but without guarantees "out-of-the box".

Direct optimization by approximating the gradient of the objective

$$egin{aligned}
abla_{ heta} \sum_{i=1}^n \log p_{ heta}(Y_i) &= \sum_{i=1}^n
abla_{ heta} \log igg(\int_{R^q} p_{ heta}(Y_i|W_i) p(W_i) \mathrm{d}W_i igg) \ &= \sum_{i=1}^n
abla_{ heta} \log \mathbb{E}_W(p_{ heta}(Y_i|W_i)) \end{aligned}$$

Algorithm principle

- Ingredient 1: fancy SG ascent with variance reduction (e.g. Adagrad + SAGA)
- Ingredient 2: Monte-Carlo/Importance sampling to estimate the gradient

Monte-Carlo estimation of the gradient

Gradient derivation (First Louis Formula)

$$egin{aligned}
abla_{ heta} \log \mathbb{E}_W \left[p_{ heta}(Y_i|W)
ight] &= rac{\mathbb{E}_W \left[p_{ heta}(Y_i|W)
ight]}{\mathbb{E}_W \left[p_{ heta}(Y_i|W)
ight]} = rac{\mathbb{E}_W \left[
abla_{ heta}p_{ heta}(Y_i|W)
ight]}{\mathbb{E}_W \left[p_{ heta}(Y_i|W)
ight]} &= rac{ar{N}}{ar{D}} \end{aligned}$$

Approximation via Importance Sampling

Our estimator of the numerator and the denominator are respectively, drawing $V_k \sim \phi(.)$,

$$ar{N} = rac{1}{n_s} \sum_{k=1}^{n_s} rac{p(V_k)}{\phi(V_k)} p_{ heta}(Y_i|V_k)
abla_{ heta} \log p_{ heta}(Y_i|V_k), ar{D} = rac{1}{n_s} \sum_{k=1}^{n_s} rac{p(V_k)}{\phi(V_k)} p_{ heta}(Y_i|V_k),$$

and the ratio can be seen as a self normalizing weighted IS approach:

$$ar{N}/ar{D} = rac{1}{n_s} \sum_k^{n_s} ilde{w}_k
abla_ heta \log p_ heta(Y_i|V_k), \quad w_k = rac{p(V_k)p_ heta(Y_i|V_k)}{\phi(V_k)}, \quad ilde{w}_k = w_k/\sum_k w_k.$$

42 / 56

Choose ϕ as close as possible as $p_{ heta}(Y|W)p(W) \propto p_{ heta}(W|Y)$,

Since p(W) is Gaussian, we choose ϕ Gaussian with

- ullet mean $m=\mathbb{E}_W\left[W|Y
 ight]$, estimated using IS with weights recycled from the previous iterations.
- covariance Σ , estimated from the 2nd derivative taken in m (explicit)

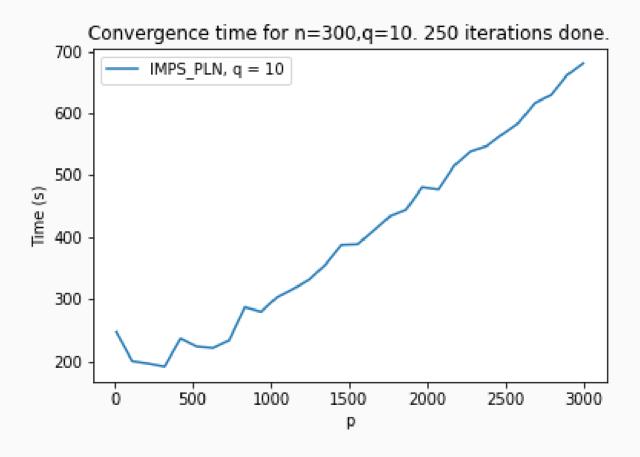
$$\Omega^{-1} = -
abla_{WW} \log p_{ heta}(Y_i|W) p(W) igg|_{W=m}$$

Expected theoretical guarantees

- Gaussian proposition law does not give bounded weights and finite variance in theory
- Student proposition law does, leading to theoretical guarantees on the estimator
- In practice, Gaussian or Student proposition law gives the same effective sample size.

Performance of Importance Sampling (1)

Varying p

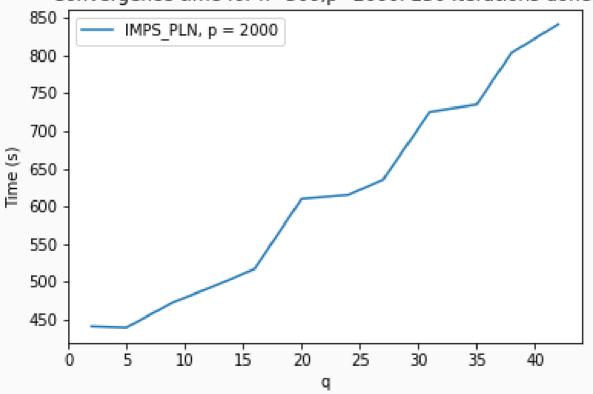


Running times for `n=300, q=10, d=1` , 250 iterations.

Performance of Importance Sampling (2)

Varying q

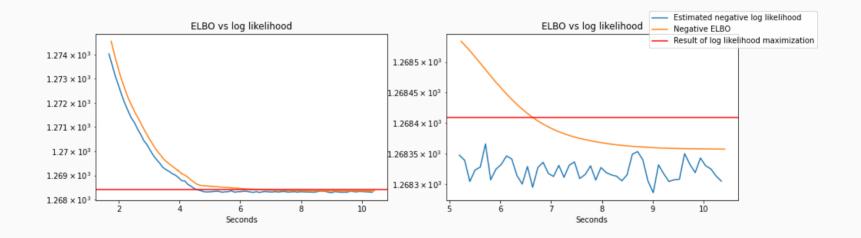
Convergence time for n=300,p=2000. 250 iterations done.



Running times for `n=300, p=2000, d=1` , 250 iterations.

V-EM vs Importance Sampling

Example with n=p=1000, d=1, q=10, Toeplitz (AR-like) covariance



- orange: ELBO of the V-EM
- red: log-likelihood found by IMPS at convergence
- blue: log-likelihood computed with current V-EM estimates

Zero-inflated PLN

A zero-inflated PLN

Motivations

- account for a large amount of zero, i.e. with single-cell data,
- try to separate "true" zeros from "technical"/dropouts

The Model

Use two latent vectors \mathbf{W}_i and \mathbf{Z}_i to model excess of zeroes and dependence structure

$$egin{aligned} \mathbf{Z}_i &\sim \mathcal{N}(\mathbf{o}_i + \mathbf{x}_i^ op \mathbf{B}, \mathbf{\Sigma}) \ W_{ij} &\sim \mathcal{B}(\operatorname{logit}^{-1}(\mathbf{x}_i^ op \mathbf{B}_j^0)) \ Y_{ij} \,|\, W_{ij}, Z_{ij} &\sim W_{ij} \delta_0 + (1 - W_{ij}) \mathcal{P}\left(\exp\{Z_{ij}\}
ight), \end{aligned}$$

The unkwown parameters are

- **B**, the regression parameters (from the PLN component)
- $oldsymbol{eta}^0$, the regression parameters (from the Bernoulli component)
- Σ , the variance-covariance matrix

→ ZI-PLN is a mixture of PLN and Bernoulli distribution with shared covariates.

ZI-PLN identifiability

Consider the standard ZIPLN model (i.e. not the ZIPLN-regression model) with 1 sample:

$$egin{aligned} \left(W_j
ight)_{j=1\dots p} &\sim \mathcal{B}^\otimes(\pi) = \mathcal{B}(\pi_1)\otimes\dots\mathcal{B}(\pi_p) \ \left(Z_j
ight)_{j=1\dots p} &\sim \mathcal{N}_p(\mu,oldsymbol{\Sigma}) \ Y_j|W_j,Z_j &\sim (1-W_j)\mathcal{P}(e^{Z_j}) + W_j\delta_0 \end{aligned}$$

Proposition

The standard ZIPLN model defined above with parameter $\theta=(\pi,\mu,\Sigma)$ and parameter space $(0,1)^p \times \mathbb{R}^p \times \mathbb{S}_p^{++}$ is identifiable.

Proof. We used the moments of \mathbf{Y} to prove identifiability and rely on the following results for Gaussian and Poisson distributions:

- ullet If $U\sim \mathcal{N}(\mu,\sigma^2)$, then $\mathbb{E}[e^U]=\exp(\mu+\sigma^2/2)$
- If $U\sim \mathcal{P}(\lambda)$ then $\mathbb{E}[U]=\lambda$ $\mathbb{E}[U^2]=\lambda(1+\lambda)$ $\mathbb{E}[U^2]=\lambda(1+3\lambda+\lambda^2)$

Each coordinate of heta can be expressed as a simple functions of the (first three) moments of $p_{ heta}$ and thus $p_{ heta}=p_{ heta'}\Rightarrow heta= heta'$.

ZI-PLN Inference

Same routine...

Variational approximation

$$p(\mathbf{Z}_i, \mathbf{W}_i \mathbf{Y}_i) pprox q_{\psi}(\mathbf{Z}_i, \mathbf{W}_i) pprox q_{\psi_1}(\mathbf{Z}_i) q_{\psi_2}(\mathbf{W}_i)$$

with

$$q_{\psi_1}(\mathbf{Z}_i) = \mathcal{N}(\mathbf{Z}_i; \mathbf{m}_i, \operatorname{diag}(\mathbf{s}_i \circ \mathbf{s}_i)), \qquad q_{\psi_2}(\mathbf{W}_i) = \otimes_{j=1}^p \mathcal{B}(W_{ij}, \pi_{ij})$$

Variational lower bound

Let
$$heta=(\mathbf{B},\mathbf{B}^0,oldsymbol{\Sigma})$$
 and $\psi=(\mathbf{M},\mathbf{S},oldsymbol{\Pi})$, then

$$egin{aligned} J(heta,\psi) &= \log p_{ heta}(\mathbf{Y}) - KL(p_{ heta}(.|\mathbf{Y}) \| q_{\psi}(.)) \ &= \mathbb{E}_{q_{\psi}} \log p_{ heta}(\mathbf{Z},\mathbf{W},\mathbf{Y}) - \mathbb{E}_{q_{\psi}} \log q_{\psi}(\mathbf{Z},\mathbf{W}) \ &= \mathbb{E}_{q_{\psi}} \log p_{ heta}(\mathbf{Y} | \mathbf{Z},\mathbf{W}) + \mathbb{E}_{q_{\psi_1}} \log p_{ heta}(\mathbf{Z}) + \mathbb{E}_{q_{\psi_2}} \log p_{ heta}(\mathbf{W}) \ &- \mathbb{E}_{q_{\psi_1}} \log q_{\psi_1}(\mathbf{Z}) - \mathbb{E}_{q_{\psi_2}} \log q_{\psi_2}(\mathbf{W}) \end{aligned}$$

Property: J is separately concave in heta, ψ_1 and ψ_2 .

Optimizaton

A sparse criterion

Recall that $heta=(\mathbf{B},\mathbf{B}^0,\mathbf{\Omega}=\mathbf{\Sigma}^{-1})$. Sparsity allows to control the number of parameters:

$$rg\min_{ heta,\psi}J(heta,\psi)+\lambda_1\|\mathbb{B}\|_1+\lambda_2\|\Omega\|_1\left(+\lambda_1\|\mathbb{B}^0\|_1
ight)$$

Alternate optimization

- (Stochastic) Gradient-descent on ${f B}^0, {f M}, {f S}$
- ullet Closed-form for posterior probabilities $oldsymbol{\Pi}$
- Inverse covariance Ω

$$\circ$$
 if $\lambda_2=0$, $\hat{oldsymbol{\Sigma}}=n^{-1}\left[(\mathbf{M}-\mathbf{X}\mathbf{B})^{ op}(\mathbf{M}-\mathbf{X}\mathbf{B})+ar{\mathbf{S}}^2
ight]$

- \circ if $\lambda_2>0$, ℓ_1 penalized MLE (\leadsto Graphical-Lasso with $\hat{oldsymbol{\Sigma}}$ as input)
- ullet PLN regression coefficient ${f B}$

$$\circ$$
 if $\lambda_1 = 0$, $\hat{\mathbf{B}} = [\mathbf{X}^ op \mathbf{X}]^{-1} \mathbf{X}^ op \mathbf{M}$

 \circ if $\lambda_1>0$, vectorize and solve a ℓ_1 penalized least-squared problem

Initialize B^0 with logistic regression on $\delta_0(\mathbf{Y})$, \mathbf{B} with Poisson regression

A quick example in genomics (1)

scRNA data set

The dataset scrna contains the counts of the 500 most varying transcripts in the mixtures of 5 cell lines in human liver (obtained with standard 10x scRNAseq Chromium protocol).

We subsample 500 random cells and the keep the 200 most varying genes

KRT81	AKR1B10	LCN2	AKR1C2	ALDH1A1	AGR2	AKR1C3	GPX2	S100A4	SAA1
<int></int>									
1	0	1	0	0	2	1	0	7	0
3	1	3	0	0	0	0	0	1	0
117	82	0	41	21	47	50	45	91	0
1	2	2	0	0	0	3	0	2	1
2	1	0	0	2	0	2	2	5	1

A quick example in genomics (2)

Model fits

We adjust the standard PLN model and the ZI-PLN model with some sparsity on the precision matrix:

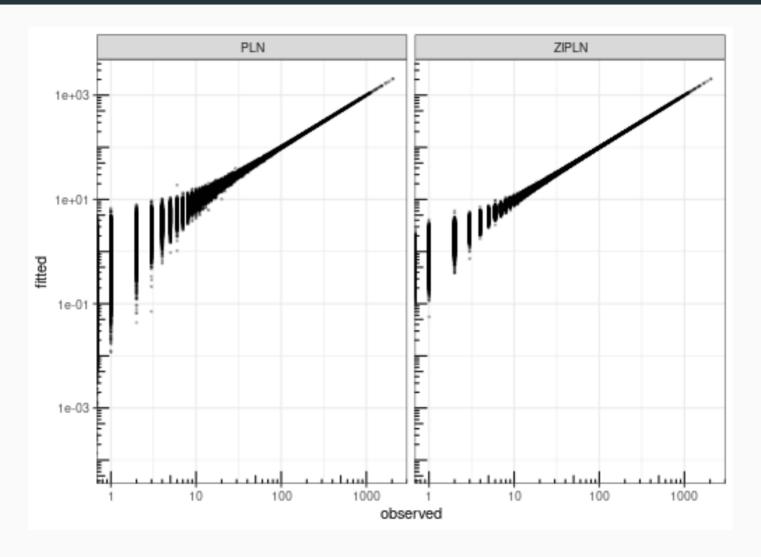
```
system.time(myPLN ←
    PLN(counts ~ 1 + offset(log(total_counts)),
        data = scRNA, control = list(trace = 0)))

## user system elapsed
## 126.280  0.098  32.049

system.time(myZIPLN ←
    ZIPLN(counts ~ 1 + offset(log(total_counts)), rho = .1,
        data = scRNA, control = list(trace = 0)))

## user system elapsed
## 86.317  0.062  13.522
```

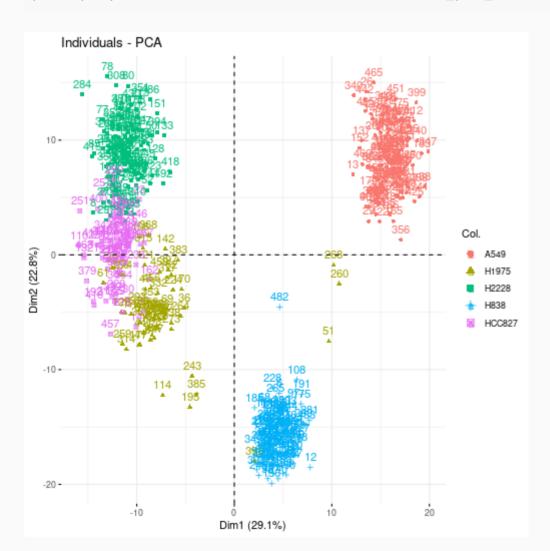
A quick example in genomics (3)



ZI-PLN seems to be less variant for predicting small counts

A quick example in genomics (4)

prcomp(myZIPLN\$latent) %>% factoextra::fviz_pca_ind(col.ind = scRNA\$cell_line)



Conclusion

Summary

- PLN = generic model for multivariate count data analysis
- Flexible modeling of the covariance structure, allows for covariates
- Efficient V-EM algorithm
- Variational estimator is asymptotically normal (and hopefully unbiased) with computable covariance matrix.
- ZI-PLN reduces (some) problems induced by high sparsity in the data

Work in progress

- Caracterisation of Variational Estimator
- Direct likelihood optim (Stochastic Gradient + Important Sampling)
- Optimisation guarantee for coupling adpative SGD + variance reduction
- Connection/Comparison with VAE with e.g Poisson neg log-likelihood as loss

Advertisement

https://computo.sfds.asso.fr, a journal promoting reproducible research in ML and stat.

References

Aitchison, J. and C. Ho (1989). "The multivariate Poisson-log normal distribution". In: Biometrika 76.4, pp. 643-653.

Chiquet, J., M. Mariadassou, and S. Robin (2018). "Variational inference for probabilistic Poisson PCA". In: *The Annals of Applied Statistics* 12, pp. 2674-2698. URL: http://dx.doi.org/10.1214/18-AOAS1177.

Chiquet, J., M. Mariadassou, and S. Robin (2019). "Variational inference for sparse network reconstruction from count data". In: *Proceedings of the 19th International Conference on Machine Learning (ICML 2019)*.

Chiquet, J., M. Mariadassou, and S. Robin (2021). "The Poisson-Lognormal Model as a Versatile Framework for the Joint Analysis of Species Abundances". In: *Frontiers in Ecology and Evolution* 9. DOI: 10.3389/fevo.2021.588292.

Facon, B., A. Hafsi, M. C. de la Masselière, et al. (2021). "Joint species distributions reveal the combined effects of host plants, abiotic factors and species competition as drivers of species abundances in fruit flies". In: *Ecological Letters*. DOI: 10.1111/ele.13825.

Falbel, D. and J. Luraschi (2022). torch: Tensors and Neural Networks with 'GPU' Acceleration. https://torch.mlverse.org/docs, https://github.com/mlverse/torch.

Inouye, D. I., E. Yang, G. I. Allen, et al. (2017). "A review of multivariate distributions for count data derived from the Poisson distribution". In: *Wiley Interdisciplinary Reviews: Computational Statistics* 9.3.

Jakuschkin, B., V. Fievet, L. Schwaller, et al. (2016). "Deciphering the pathobiome: intra-and interkingdom interactions involving the pathogen Erysiphe alphitoides". In: *Microbial ecology* 72.4, pp. 870-880.

Johnson, S. G. (2011). The NLopt nonlinear-optimization package. URL: http://ab-initio.mit.edu/nlopt.