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Packages required for reproducing the slides

library(tidyverse)
library(corrplot)
library(GGally)
library(FactoMineR)
library(factoextra)
library (kernlab)
library(aricode)
library(animation)
library(igraph)
theme_set (theme_bw ()

#
#
#
#
#
#
#
#
#
)

opinionated collection of packages for data manipulation
fancy plots of matrices as images

extension to ggplot vizualization system

PCA and oter linear method for dimension reduction

fancy plotting for FactoMineR output

Kernel-based methods, among which spectral-clustering
fast computation of clustering measures

kmeans animation slides

graph manipulation

# plots themes
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Companion data set

Morphological Measurements on Leptograpsus Crabs

Description

The crabs data frame has 200 rows and 8 columns, describing 5 morphological
measurements on 50 crabs each of two colour forms and both sexes, of the
species Leptograpsus variegatus collected at Fremantle, W. Australia.

crabs <- MASS::crabs %>% select(-index) %>%
rename (sex = sex,

species = sp,
frontal_lob = FL,
rear_width = RW,
carapace_length = CL,
carapace_width = CW,
body_depth = BD)

crabs %>% select(sex, species) %>% summary() %>% knitr::kable("latex")

sex species
F:100 B:100
M:100 | O:100

3/62



Companion data set |l
Pairs plot of attributes

ggpairs(crabs, columns = 3:7, aes(colour = paste(crabs$species,
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Companion data set |ll
PCA on the attributes

select(crabs, -species, -sex) %>% PCA(scale.unit = FALSE, graph = FALSE) %>%
fviz_pca_biplot(axes = c(1,2), col.ind = paste(crabs$species, crabs$sex))

PCA - Biplot
i rear_width
'
'
1 196 200
! 183 19@92- -
! H
- 1641 fgs 195
Ea

154 150 1% -
B 157
65 1565 160 .

151 1557ﬁ' CIeT col
= % <A
5 103:3 1083840 778 7 7%23{ e BF
s A BM
)= 120~ - 437 T B e = oF
o +
om

0 T5% 38
131 133
+ o+

31
: 32 0 z ¥

Dim1 (98.2%)

5/62



Remove size effect |
Carried by the 1st principal component

First component
f1 = Xcul.

We extract the best rank-1 approximation of X to remove the size effect,
carried by the first axis, and return to the original space,

X(l) = flulT.

attributes <- select(crabs, -sex, -species) %>% as.matrix()
ul <- eigen(cov(attributes))$vectors[, 1, drop = FALSE]
attributes_rankl <- attributes %*% ul %*% t(ul)
crabs_corrected <- crabs

crabs_corrected[, 3:7] <- attributes - attributes_rankl

~~ Axis 1 explains a latent effect, here the size in the case at hand,
common to all attributes.
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Remove size effect Il
Carried by the 1st principal component

ggpairs(crabs_corrected, columns = 3:7, aes(colour = paste(crabs$species, crabs$se:
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PCA on corrected data

select(crabs_corrected, -species, -sex) %>} FactoMineR::PCA(graph = FALSE) %>%
fviz_pca_biplot(col.ind = paste(crabs_corrected$species, crabs_corrected$sex))
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Questions

@ Could we automatically identify some grouping (clustering) between
samples?

® Would this clustering correspond to some known labels (sex,
species)?

® Do we need to transform the data before we perform clustering?
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Clustering: general goals

Objective: construct a map
f:D={1,...,n} = {1,...,K}

where K is a fixed number of clusters.
Careful! classification # clustering

e (lassification presupposes the existence of classes
® Clustering labels only elements of the dataset

~~ no ground truth (no given labels)

~ discovers a structure "natural” to the data

~> not necessarily related to a known classification

Motivations
e describe large masses of data in a simplified way,
® structure a set of knowledge,
® reveal structures, hidden causes,
® use of the groups in further processing,
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Clustering: challenges

Clustering quality

No obvious measure to define the quality of the clusters. Ideas:
® |nner homogeneity: samples in the same group should be similar

e Quter inhomogeneity: samples in different groups should be different

Number of clusters
Choice of the number of clusters K often complex
® No ground truth in unsupervised learning!

® Several solutions might be equally good

Two general approaches
e distance-based: require a distance/dissimilarity between {x;}

® model-based: require assumptions on the distribution P
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Part |l

Distance-based method
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Outline

Distance-based method

@ Clustering: introduction
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Dissimilarity and Distance

Clustering requires a measure of ressemblance between object
Definition ((dis)similarity)

Similarity (resp. Dissimilarity) measures the ressemblance (resp.
discrepancy) between objects based on several features.

For instance, two objects are similar if
® they share a certain feature
® their features are close according to a measure of proximity
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Dissimilarity and Distance

Clustering requires a measure of ressemblance between object
Definition ((dis)similarity)
Similarity (resp. Dissimilarity) measures the ressemblance (resp.

discrepancy) between objects based on several features.

For instance, two objects are similar if
® they share a certain feature
® their features are close according to a measure of proximity

Definition (distance/metric)

Dissimilairty can be measuresd by distances, i.e. a function d;; between
pairs in {x;} s.t.

® dij >0, ° dij = dj;,

® di; =0& x; =xj, ° dikgdij—i-djk.
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Classification structures: Partition

Clustering leads to a grouping (or classification) of individuals into
homogeneous classes

We consider two structures to describe this classification:
® partitions and

® hierarchies.

Definition (Partition)

A partition P is a decomposition P = {P},..., Px} of a finite ensemble
2 such that

® P.NPy=0forany k #Fk

bt Uk P.=9Q
In a set @ = (x1,...,X,) partitioned into K classes, each element of the

set belongs to a class and only one.
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Classification structures: Hierarchy

Definition (Hierarchy)

A hierarchy H is a non empty subset of a finite ensemble €2 such that
e QecH,
° Vx e {x} eH,
e VH H' € H, theneither HNH' =0, HC H or H C H.
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Classification structures: Hierarchy

Definition (Hierarchy)

A hierarchy H is a non empty subset of a finite ensemble €2 such that
e QecH,
° Vx e {x} eH,
e VH H' € H, theneither HNH' =0, HC H or H C H.

Definition (Index of a Hierarchy)

The index is a function ¢ : H — R4 such that
e if HC H' then i(H) < i(H');
e if x € Q then i(x) = 0.
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Classification structures: Hierarchy

Definition (Hierarchy)

A hierarchy H is a non empty subset of a finite ensemble €2 such that
e QecH,
° Vx e {x} eH,
e VH,H' ¢ H, then either HNH' =0, HC H or H C H.

Definition (Index of a Hierarchy)

The index is a function ¢ : H — R4 such that
o if H C H' then i(H) < i(H');
e if x € Q then i(x) = 0.

Properties (Partition and Hierarchy)

® Fach level of an indexed hierarchy is a partition;

e {0, P,...,Pg,X1,...,Xpn} is a hierachy.
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Clusterings Comparison: Contingency table

Definition

Consider two clusterings U and V' of elements in €2, into respectively |U]
and |V| classes. The |U| x |V| contingency matrix stores at position
(4,7) the number of elements that are simultaneously in cluster ¢ of U

and j of V.
U\V | W Va % Sums
Ui nir N2 nv| ni.
Uz | na1 na Na|v| ng,
Upl | mop e nuvi | Yl
Sums | n; N9 ny | n.=n
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Clusterings Comparison: Measures (1)

Definition (Rand index)
Given a set () of n elements and two partitions U and V' to compare,
define the following:
® @, the number of pairs in the same subset in U and in in V
® b, the number of pairs in different subsets in U and in V'
The Rand index, RI € [0,1] is

a+b

(5)

RI =

The Rand index can be viewed as a measure of the percentage of correct

decisions:
_TP+TN

RI_T,

where T'P, TN are true positive and true negative decisions.
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Clusterings Comparison: Measures (1)

The ARI (most popular) is a version of the Rl adjusted for chance
grouping of element (i.e., the expected similarity of all pair-wise
comparisons).

Definition (Adjusted Rand-index)

Other popular measures:
® NV, the normalized variation information
e NID, the normalized information distance

e NMI, the normalized mutual information

19/62



Outline

Distance-based method

@® The K-means algorithm
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K-means heuristic

Idea

@ Clustering is defined by a partition in K classes
® Minimize a criteria of clustering quality

©® Use Euclidean distances to measure dissimilarity

Criteria: intra-class variance/ Inertia " within”

Intra-class variance measures inner homogeneity

K n
Iw=> > e llxi— w3,

k=1 1i=1

where
® ;. are the centers (prototypes) of classes

® ¢ = liep, is a partition matrix
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K-means algorithm

Ideally, one would solve

(¢,r) = arg min I,,((c, ), s.t  cis a partition matrix.
(c,p)

This problem is hard to solve but can be optimized locally as follows:

K-means algorithm (Loyds)

Initialization start by a (pseudo) random choice for the centers p,,
Alternate until convergence
step 1 given u, chose ¢ minimizing I, = assign x; to the
nearest prototype
step 2 given ¢, chose p minimizing I,, = update p by the
new means of classes
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K-means in action |
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K-means in action |l
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K-means in action llI
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K-means in action V
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K-means: properties

Other schemes
® McQueen: modify the mean each time a sample is assigned to a new
cluster.

® Hartigan: modify the mean by removing the considered sample,
assign it to the nearby center and recompute the new mean after
assignment.

Initialization
No guarantee to converge to a global optimum
® Repeat and keep the best result
® k-Mean++: try to take them as separated as possible.

Complexity
O(nKT) where T is the number of step in the algorithm.

29/62



K-means in R on uncorrected data set |

uncor_kmeans_res <- crabs %>%
select(-species, -sex) %>
kmeans (4, nstart = 10)

uncor_clusters <- as.factor(uncor_kmeans_res$cluster)
uncor_centers <- as_tibble(uncor_kmeans_res$centers)
classes <- paste(crabs_corrected$species, crabs_corrected$sex, sep = "-")

crabs %>%

ggplot (aes(x = carapace_length, y = carapace_width, color

geom_point (aes(shape = classes)) +
geom_point(data = uncor_centers, color
geom_point(data = uncor_centers, color

'coral',
'coral',

size
size

= uncor_clusters)) +

4 , pch = 21) +

50, alpha

0.2)
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K-means in R on uncorrected data set Il
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K-means in R on corrected crabs data set |

kmeans_res <- crabs_corrected %>%
select(-species, -sex) %>
kmeans (4, nstart = 10)
clusters <- as.factor(kmeans_res$cluster)
centers <- as.tibble(kmeans_res$centers)
classes <- paste(crabs_corrected$species, crabs_corrected$sex, sep = "-")

crabs_corrected %>%
ggplot(aes(x = carapace_length, y = carapace_width, color = clusters)) +
geom_point (aes(shape = classes)) +
geom_point(data = centers, color = 'coral', size = 4 , pch = 21) +
geom_point(data = centers, color = 'coral', size = 50, alpha = 0.2)
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K-means

in R on corrected crabs data set Il
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Clustering comparison

aricode::ARI(clusters, classes)
## [1] 0.8317615
aricode: :ARI (uncor_clusters, classes)

## [1] 0.01573617

knitr::kable(table(clusters, classes),
caption = "Estimating structure with k-means")

Table: Estimating structure with k-means

B-F | B-M | O-F | O-M
0 42 0 0
48 5 0 0
2 3 3 50

0 0 47 0
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How about a "spectral” k-means? |
PCA + k-means

SVD <- svd(select(crabs_corrected, -species, -sex))
spec_crabs <- as.tibble(SVD$ul,1:2] %*% diag(SVD$d[1:2]))
spec_kmeans_res <- spec_crabs %>%
kmeans (4, nstart = 10)
spec_clusters <- as.factor(spec_kmeans_res$cluster)
spec_centers <- as.tibble(spec_kmeans_res$centers)
classes <- paste(crabs_corrected$species, crabs_corrected$sex, sep = "-")

ggplot (spec_crabs, aes(V1l, V2, color = spec_clusters)) +
geom_point (aes(shape = classes)) +
geom_point(data = spec_centers, color = 'coral', size = 4 , pch = 2
geom_point(data = spec_centers, color = 'coral', size 50, alpha =

1) +
0.2)
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How about a "spectral” k-means? |l
PCA + k-means
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How about a "spectral” k-means? Il

PCA + k-means

aricode: :ARI(spec_clusters, classes)

## [1] 0.8090372

knitr::kable(table(spec_clusters, classes),

caption = "Estimating structure with spectral k-means")

Table: Estimating structure with spectral k-means

B-F | B-M | O-F | O-M
1 3 3 50

0 40 0 0
49 7 1 0
0 0 46 0
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Outline

Distance-based method

© Hierarchical Agglomerative Clustering
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Agglomerative Clustering: Heuristic

Idea

@ Start with small clusters (e.g. one cluster = one individual)
® Merge the most similar clusters sequentially (and greedily)

® Stops when all individuals are in the same groups

Ingredients

@ a dissimilarity measure (distance between individuals)

@® a merging criterion A (dissimilarity between clusters)

+ Generates a hierarchy of clustering instead of a single partition

— Need to select the number of cluster afterwards
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Agglomerative Clustering: general algorithm

Algorithm
@ Start with (C,EO)) = ({x;}) the collection of all singletons.

® At step s, we have n — s clusters (Clgs)):
® Find the two most similar clusters according to a criterion A:

(k,0) = arg min A(C(,C5))
(k')

* Merge C*) and C* into "V
® Update the distances between C,ESH) and the remaining clusters

© Repeat until there is only one cluster.
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Agglomerative Clustering: general algorithm

Algorithm
@ Start with (C,EO)) = ({x;}) the collection of all singletons.

® At step s, we have n — s clusters (CI(CS)):
® Find the two most similar clusters according to a criterion A:

(k,€) = arg min A(C,C1))
(k') ‘
* Merge C*) and C* into "V
® Update the distances between C,ESH) and the remaining clusters

© Repeat until there is only one cluster.

Complexity
® In general O(n?)

* Can be reduced to O(n?) if boundering the number of merges
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Merging criterion based on the distance between points
¢ Single linkage (or minimum linkage):

A(Cr,Co) = min  d(x4,%;)

xiGCk,X]'GCg
e Complete linkage (or maximum linkage):

A(Ck,Cp) = max glg(}j{é d(x;,%;)

e Average linkage (or group linkage):

A(Ck,Cy)

Z Z d(xi,x;)

x;ECE xeCy

|CkHC£\
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Ward's criteria

Merging criterion based on distance to the mean
Ward's criterion:

A(Ck,Cy) = Z (d2(xiyllfcku05) - dQ(Xi7 I‘I’Ck))

x;€C

+ Z (dQ(XJVUCjUCz) - dQ(Xj’uCE))

X;j e€Cy

Euclidean case
If d is the Euclidean distance, then

2|Ck|Ce| 5

A == d
(Ck,Ce) Cel + [l (ke s be,)
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Ward's criteria: details

Recall that the inertia measures the homogenity of the size-K clustering

Iy = Z > i — e, 3, IB—an||Mk—M||2

k=1x;€Cg
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Ward's criteria: details

Recall that the inertia measures the homogenity of the size-K clustering

Iy = Z >l —pe 3 In —an||ﬂk—ﬂ||2

k=1x;€Cg

Consider the following two partitions
e P=(Cy,...,Ck) at one level of the hierarchy €2
e P'is P once Cj,C; merged

Then

|Ckl|Cel

Iy (P') — Iy (P) = [AE (ke s ke,)

1
= iA(Ck,Cg).

43/62



Ward's criteria: details

Recall that the inertia measures the homogenity of the size-K clustering

Iy = Z > i — e, 3, IB—Z”k||Hk—M”2

k=1x;€Cg

Consider the following two partitions
e P=(Cy,...,Ck) at one level of the hierarchy €2
e P'is P once Cj,C; merged

Then

|Ci|[Cel

1
*(pe,, pe,) = iA(Ckacf)'

~~ At each step, Ward limits the loss (increase) of the intra (inter) class
variance

~~ Defines an indexed hierarchy (height of the dendrogram)
~> Same criteria as in the K-means algorithm
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Ward agglomerative clustering in R

Ward <- crabs_corrected %>%
select(-sex, -species) %>%

dist(method = "euclidean") %>%
hclust (method = "ward.D2")
plot(Ward)

Cluster Dendrogram

15

10
1

Height

hclust (*, ”'ward,DZ”)
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Ward agglomerative clustering in R: comparison |

Compare with out reference classification and k-means

aricode: :ARI(cutree(Ward, 4), classes)
## [1] 0.7071894
aricode: :ARI(cutree(Ward, 4), clusters)

## [1] 0.7538279

knitr::kable(table(clusters, cutree(Ward,4)),
caption = "k-means vs Ward")

Table: k-means vs Ward

1 2 3 4
9 | 33 0 0
53 0 0 0
6 0| 52 0
2 0 2 | 43
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Ward agglomerative clustering in R: comparison |l

Optimize over a range of values

Ward %>/ cutree(k = 1:10) %>% as.data.frame() %>% as.list() %>%
sapply(aricode: :ARI, classes) %>% plot(type = "1")
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Ward agglomerative clustering in R: comparison Il|
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Ward agglomerative clustering in R: comparison IV

plot(rev(Ward$height) [1:20], xlab = "number of clusters", ylab = "height")

15
1

height
10

number of clusters
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Ward agglomerative clustering in R: projection |

clusters_ward <- as.factor(cutree(Ward, 4))
centers_ward <- select(crabs_corrected, -sex, -species) %>%
aggregate(list (cutree(Ward, 4)), mean) %>% as_tibble() %> select(-Group.1)

crabs_corrected %>%
gegplot (aes(x = carapace_length, y = carapace_width, color = clusters_ward)) +
geom_point (aes(shape = classes)) +
geom_point(data = centers_ward, color = 'coral', size = 4 , pch = 21) +
geom_point(data = centers_ward, color = 'coral', size = 50, alpha = 0.2

)
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Ward agglomerative clustering in R: projection |l
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Outline

Distance-based method

@ Spectral Clustering
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Spectral Clustering

Principle: graph-based transformation prior to clustering

@ Build a similarity with a weighted graph of the data
@® Use the spectral property of this similarity (~ kernel)

©® Apply clustering (e.g., k-means) to the projected data

P28 o o R
2

o0 3
X1

data

Figure: Performing clustering after transformation + dimension reduction of the
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Creating the graph

Many choices

® K-nearest neighbor graph
® any distance-based similarity (fully connected graph)

® any kernel-based similarity (e.g., Gaussian kernel)
The connectivity of G = (V, ) is captured by the (weighted) adjacency

matrix A:
Wij > 0 ifi~yj,
A —
(A {O otherwise.

Proposition

The degrees of G are then simply obtained as the row-wise and/or
column-wise sums of A.
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Incidence matrix

Definition (Incidence matrix)

The connectivity of G = (V, ) is captured by the [V| x |€| matrix B:

(B)i; = VWij if i is incident to edge j,
Y 0 otherwise.

Proposition (Relationship)

Let B be a modified signed version of B wheref?ij =+/—, /wij ifiis
incident to j as tail/head. Then

BBT=D - A,
where D = diag({d;,i € V}) is the diagonal matrix of degrees.

55 /62



Graph Laplacian

Definition ((Un-normalized) Laplacian)

The Laplacian matrix L, resulting from the modified incidence matrix B
B;j =1/ —1if i is incident to j as tail/head, is defined by

L=BBT=D-A,
where D = diag(d;,i € V) is the diagonal matrix of degrees.

Remark

¢ L is called the graph Laplacian (by analogy to continuous Laplacian).
® Spectrum of L has much to say about the structure of the graph G.
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Graph Laplacian: spectrum

Proposition (Spectrum of L)

The n x n matrix L has the following properties:

1

T 2

x Lx = 3 E A Ajj(z; —z5)%, VxeR"
/L?]

e L is a symmetric, positive semi-definite matrix,
® the smallest eigenvalue is 0 with associated eigenvector 1.

® L has n positive eigenvalues 0 = \; < --- < Ay,

Corollary (Spectrum and Graph)

e The multiplicity of the first eigen value (0) of L determines the
number of connected components in the graph.

® The larger the second non trivial eigenvalue, the higher the
connectivity of G.
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Crabs: Fielder vector and eigenvalue |

graph_crabs <- crabs %>% select(-species, -sex) %>/
t() %% cor() %>% graph_from_adjacency_matrix(weighted = TRUE)
eigen_crabs <- graph.laplacian(graph_crabs) %>} eigen()

fielder_vector <- eigen_crabs$vectors[, nrow(crabs) - 1]
faction <- factor(paste(crabs$species, crabs$sex, sep="-"))

par (mfrow = c(1,2))

plot(eigen_crabs$values[-nrow(crabs)], col = "blue", ylab = "Eigenvalues of Graph I
plot(fielder_vector, pch = 16, xlab = "labels",
ylab = "Fielder vector entry", col = faction)

abline(0, 0, lwd = 2, col = "lightgray")
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Some variants

Definition ((Normalized) Laplacian)

The normalized Laplacian matrix L is defined by

Ly =D YLD Y2 =1-D 2AD V2

Definition ((Absolute) Graph Laplacian)

The absolute Laplacian matrix L is defined by
Lus = D7V/2AD7V2 =1 - Ly,

with eigenvalues 1 — A\, <--- <1 — Xy <1— X1 =1, where
0= XA <--- <\, are the eigenvalues of Ly.
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Normalized Spectral Clustering
by Ng, Jordan and Weiss (2002)

Input: Adjacency matrix and number of classes ()

Compute the normalized graph Laplacian L

Compute the eigen vectors of L associated with the () smallest
eigenvalues

Define U, the n x () matrix that encompasses these () vectors

Define U, the row-wise normalized version of U: u;; = ”817“
1

2

Apply k-means to (U;)i=1,..n

Output: vector of classes C € Q", such as C; =q ifi € g
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Absolute Spectral Clustering
by Rohe et al. (2011)

Input: Adjacency matrix and number of classes ()

Compute the graph Laplacian L

Compute the eigen vectors of L, associated with the @) largest
absolute eigenvalues

Define U, the p x @ matrix that encompasses these () vectors

Apply k-means to (U;)i=1,..p

Output: vector of classes C € QP, suchas C; = q ifi € ¢
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